Skip to main content
Log in

Synergistic effect of embossed Cu current collector and potassium nitrate for achieving dense lithium deposition and improving cycle life in anode-free Li metal batteries

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Anode-free lithium metal batteries (AFLMB) operate solely with lithium (Li) in the lithiated cathode, eliminating the mass and volume of the anode to maximize energy density of the battery. However, uneven Li deposition can lead to the formation of Li dendrites, hindering practical applications due to issues like solid electrolyte interphase (SEI) breakage and low coulombic efficiency (CE). To address these challenges, we investigated the synergistic effect of applying a 3D-structured current collector (CC) and KNO3 for Li deposition control. We fabricated an embossed Cu CC with a 3D structure using a copper nanoparticle (Cu NP) slurry and intense pulsed light (IPL) sintering techniques. When KNO3 electrolyte additives were used in conjunction with the manufactured 3D embossed Cu, we observed a significant improvement in cycle life. The KNO3 additive prevented the top plating of Li through an electrostatic shielding effect, while the anion contributed to dense Li deposition by forming a stable SEI layer, such as Li3N. Consequently, the combination of embossed Cu and KNO3 enabled thick and compact Li deposition, reducing Li loss during the plating and stripping processes and thereby improving the lifespan of the cell. In AFLMB matched with NCM811, capacity retention after 50 cycles increased to 52%, compared to 0.8% in the absence of electrolyte additives, demonstrating stable operation even after more than 100 cycles. Therefore, combining a thin, 3D-structured CC with an electrolyte additive capable of controlling Li deposition presents a promising strategy for enhancing the practical use of carbonate electrolyte-based AFLMB through synergistic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 7, 513 (2014)

    Article  CAS  Google Scholar 

  2. D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12, 194 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 11, 2000804 (2021). https://doi.org/10.1002/aenm.202000804

    Article  CAS  Google Scholar 

  4. J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Adv. Funct. Mater. 26, 7094 (2016)

    Article  CAS  Google Scholar 

  5. Y. Zhao, Y. Wu, H. Liu, S.-L. Chen, S.-H. Bo, ACS APPL MATER INTER 13, 35750 (2021). https://doi.org/10.1021/acsami.1c08944

    Article  CAS  Google Scholar 

  6. S. Liu, K. Jiao, J. Yan, Energy Stor. Mater. 54, 689 (2023). https://doi.org/10.1016/j.ensm.2022.11.021

    Article  CAS  Google Scholar 

  7. Y.-K. Sun, ACS Energy Lett. 5, 3221 (2020). https://doi.org/10.1021/acsenergylett.0c01977

    Article  CAS  Google Scholar 

  8. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I.T. Han, Nat. Energy 5, 299 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  ADS  CAS  Google Scholar 

  9. J. Ko, Y.-S. Yoon, J. Korean Ceram. Soc. 60, 591 (2023). https://doi.org/10.1007/s43207-023-00293-6

    Article  CAS  Google Scholar 

  10. R. Li, J. Li, L.-x. Li, H. Yang, G. Zhang, J. Xiang, X.-q. Shen, M.-x. Jing, Colloids Surf. A Physicochem. Eng. Asp. 657, (2023). doi:https://doi.org/10.1016/j.colsurfa.2022.130600

  11. Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter, B.-J. Hwang, J. Power. Sources 450, 227589 (2020). https://doi.org/10.1016/j.jpowsour.2019.227589

    Article  CAS  Google Scholar 

  12. S. Shanmugapriya, M.-G. Kim, S. Im, Y. Jeong, S. Surendran, T. Park, Y. Yun, H. Lee, T. Kim, U. Sim, J. Korean Ceram. Soc. (2023). https://doi.org/10.1007/s43207-023-00331-3

    Article  Google Scholar 

  13. L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513

    Article  ADS  CAS  PubMed  Google Scholar 

  14. X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem 4, 174 (2018). https://doi.org/10.1016/j.chempr.2017.10.017

    Article  CAS  Google Scholar 

  15. R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin, I.G. Hill, J.R. Dahn, Nat. Energy 4, 683 (2019). https://doi.org/10.1038/s41560-019-0428-9

    Article  CAS  Google Scholar 

  16. Y. Zhao, T. Zhou, T. Ashirov, M.E. Kazzi, C. Cancellieri, L.P.H. Jeurgens, J.W. Choi, A. Coskun, Nat. Commun. 13, 2575 (2022). https://doi.org/10.1038/s41467-022-29199-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058

    Article  ADS  CAS  PubMed  Google Scholar 

  18. D. Wang, D. Lv, H. Liu, J. Yang, Y. Qian, Z. Chen, Energy Stor. Mater. 49, 454 (2022). https://doi.org/10.1016/j.ensm.2022.04.020

    Article  Google Scholar 

  19. N. Zhang, T. Zhao, L. Wei, T. Feng, F. Wu, R. Chen, J. Power. Sources 536, 231374 (2022). https://doi.org/10.1016/j.jpowsour.2022.231374

    Article  CAS  Google Scholar 

  20. J. Yun, B.-K. Park, E.-S. Won, S.H. Choi, H.C. Kang, J.H. Kim, M.-S. Park, J.-W. Lee, ACS Energy Lett. 5, 3108 (2020). https://doi.org/10.1021/acsenergylett.0c01619

    Article  CAS  Google Scholar 

  21. N. Shen, H. Liu, W. Tang, Z. Liu, T. Wang, Y. Ma, Y. Zhong, J. He, Z. Zhu, Y. Wu, X. Cheng, Ind. Eng. Chem. Res. 62, 15360 (2023). https://doi.org/10.1021/acs.iecr.3c02202

    Article  CAS  Google Scholar 

  22. C. Wang, X. Mu, J. Yu, Z. Lu, J. Han, Chem. Eng. J. 435 (2022). doi:https://doi.org/10.1016/j.cej.2022.134643

  23. C. Heubner, S. Maletti, H. Auer, J. Hüttl, K. Voigt, O. Lohrberg, K. Nikolowski, M. Partsch, A. Michaelis, Adv. Funct. Mater. 31, 2106608 (2021). https://doi.org/10.1002/adfm.202106608

    Article  CAS  Google Scholar 

  24. F. Shen, F. Zhang, Y. Zheng, Z. Fan, Z. Li, Z. Sun, Y. Xuan, B. Zhao, Z. Lin, X. Gui, X. Han, Y. Cheng, C. Niu, Energy Stor. Mater. 13, 323 (2018). https://doi.org/10.1016/j.ensm.2018.02.005

    Article  Google Scholar 

  25. J. Chen, L. Dai, P. Hu, Z. Li, Molecules 28, (2023). doi:https://doi.org/10.3390/molecules28020548

  26. H.N. Umh, J. Park, J. Yeo, S. Jung, I. Nam, J. Yi, Electrochem. commun. 99, 27 (2019). https://doi.org/10.1016/j.elecom.2018.12.015

    Article  CAS  Google Scholar 

  27. S.-H. Wang, Y.-X. Yin, T.-T. Zuo, W. Dong, J.-Y. Li, J.-L. Shi, C.-H. Zhang, N.-W. Li, C.-J. Li, Y.-G. Guo, Adv. Mater. 29, 1703729 (2017). https://doi.org/10.1002/adma.201703729

    Article  CAS  Google Scholar 

  28. S. Zhang, J. Zeng, Y. Ma, Y. Zhao, Y. Qian, L. Suo, J. Huang, X. Wang, W. Li, B. Zhang, Electrochim. Acta 442, 141895 (2023). https://doi.org/10.1016/j.electacta.2023.141895

    Article  CAS  Google Scholar 

  29. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, J. Am. Chem. Soc. 135, 4450 (2013). https://doi.org/10.1021/ja312241y

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M.H. Engelhard, D. Mei, R. Cao, F. Ding, A.V. Cresce, K. Xu, J.-G. Zhang, Nano Lett. 14, 6889 (2014). https://doi.org/10.1021/nl5039117

    Article  ADS  CAS  PubMed  Google Scholar 

  31. N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, B.-J. Hwang, J. Power. Sources 437, 226912 (2019). https://doi.org/10.1016/j.jpowsour.2019.226912

    Article  CAS  Google Scholar 

  32. Y.-R. Jang, S.-J. Joo, J.-H. Chu, H.-J. Uhm, J.-W. Park, C.-H. Ryu, M.-H. Yu, H.-S. Kim, Int J Pr Eng Man-Gt 8, 327 (2021). https://doi.org/10.1007/s40684-020-00193-8

    Article  Google Scholar 

  33. Z. Gong, C. Lian, P. Wang, K. Huang, K. Zhu, K. Ye, J. Yan, G. Wang, D. Cao, Energy Environ. 5, 1270 (2022). https://doi.org/10.1002/eem2.12243

    Article  CAS  Google Scholar 

  34. J. Kim, G.R. Lee, R.B.K. Chung, P.J. Kim, J. Choi, Energy Stor. Mater. 61, 102899 (2023). https://doi.org/10.1016/j.ensm.2023.102899

    Article  Google Scholar 

  35. Y. Jiang, B. Wang, A. Liu, R. Song, C. Bao, Y. Ning, F. Wang, T. Ruan, D. Wang, Y. Zhou, Electrochim. Acta 339, 135941 (2020). https://doi.org/10.1016/j.electacta.2020.135941

    Article  CAS  Google Scholar 

  36. X.-F. Liu, D. Xie, F.-Y. Tao, W.-Y. Diao, J.-L. Yang, X.-X. Luo, W.-L. Li, X.-L. Wu, ACS Appl Mater Inter 14, 23588 (2022). https://doi.org/10.1021/acsami.2c06522

    Article  CAS  Google Scholar 

  37. J. Xia, F. Zhang, J. Liang, K. Fang, W. Wu, X. Wu, J. Alloy. Compd. 853, 157371 (2021). https://doi.org/10.1016/j.jallcom.2020.157371

    Article  CAS  Google Scholar 

  38. L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. Le Cras, J. Phys. Chem. C 117, 4421 (2013). https://doi.org/10.1021/jp3119633

    Article  CAS  Google Scholar 

  39. W. Jia, C. Fan, L. Wang, Q. Wang, M. Zhao, A. Zhou, J. Li, ACS APPL MATER INTER 8, 15399 (2016). https://doi.org/10.1021/acsami.6b03897

    Article  CAS  Google Scholar 

  40. Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, Y. Cui, Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 57, 14055 (2018). https://doi.org/10.1002/anie.201807034

    Article  CAS  Google Scholar 

  42. A. Tudela Ribes, P. Beaunier, P. Willmann, D. Lemordant, J. Power Sources 58, 189 (1996). https://doi.org/10.1016/S0378-7753(96)02397-X

  43. C. Fang, X. Wang, Y.S. Meng, Trends Chem. 1, 152 (2019). https://doi.org/10.1016/j.trechm.2019.02.015

    Article  CAS  Google Scholar 

  44. K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, J. Mater. Chem. A. 5, 11671 (2017). https://doi.org/10.1039/C7TA00371D

    Article  CAS  Google Scholar 

  45. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.-H. Lee, J. Alvarado, M.A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y.S. Meng, Nature 572, 511 (2019). https://doi.org/10.1038/s41586-019-1481-z

    Article  ADS  CAS  PubMed  Google Scholar 

  46. F. Liu, R. Xu, Y. Wu, D.T. Boyle, A. Yang, J. Xu, Y. Zhu, Y. Ye, Z. Yu, Z. Zhang, X. Xiao, W. Huang, H. Wang, H. Chen, Y. Cui, Nature 600, 659 (2021). https://doi.org/10.1038/s41586-021-04168-w

    Article  ADS  CAS  PubMed  Google Scholar 

  47. S. Zhang, R. Li, N. Hu, T. Deng, S. Weng, Z. Wu, D. Lu, H. Zhang, J. Zhang, X. Wang, L. Chen, L. Fan, X. Fan, Nat. Commun. 13, 5431 (2022). https://doi.org/10.1038/s41467-022-33151-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Yuan, S. Weng, F. Wang, X. Dong, Y. Wang, Z. Wang, C. Shen, J.L. Bao, X. Wang, Y. Xia, Nano Energy 83 (2021). https://doi.org/10.1016/j.nanoen.2021.105847

  49. Z. Jiang, C. Li, J. Mo, H. Yang, H.-W. Li, Q. Zhang, Y. Li, Chem. Eng. J. 451, 138580 (2023). https://doi.org/10.1016/j.cej.2022.138580

    Article  CAS  Google Scholar 

  50. S. Xia, L. Luo, X. Zhang, L. Shen, J. Yang, W. Liu, S. Zheng, Energy Stor. Mater. 55, 517 (2023). https://doi.org/10.1016/j.ensm.2022.12.017

    Article  Google Scholar 

  51. C.-T. Yang, Y. Qi, Chem. Mater. 33, 2814 (2021). https://doi.org/10.1021/acs.chemmater.0c04814

    Article  CAS  Google Scholar 

  52. Z. Wang, L.P. Hou, Z. Li, J.L. Liang, M.Y. Zhou, C.Z. Zhao, X. Zeng, B.Q. Li, A. Chen, X.Q. Zhang, P. Dong, Y. Zhang, J.Q. Huang, Q. Zhang, Carbon Energy 5 (2022). https://doi.org/10.1002/cey2.283

  53. Y. Lin, J. Chen, H. Zhang, J. Wang, J. Energy Chem. 80, 207 (2023). https://doi.org/10.1016/j.jechem.2023.02.005

    Article  CAS  Google Scholar 

  54. C. Monroe, J. Newman, J. Electrochem. Soc. 150, A1377 (2003). https://doi.org/10.1149/1.1606686

    Article  CAS  Google Scholar 

  55. W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen, Y. He, Q. Feng, G. Zhu, Y. Lu, Adv. Mater. 32, e2001740 (2020). https://doi.org/10.1002/adma.202001740

    Article  CAS  PubMed  Google Scholar 

  56. W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol. 11, 1 (2020). https://doi.org/10.33961/jecst.2019.00528

    Article  CAS  Google Scholar 

  57. P. Iurilli, C. Brivio, V. Wood, J. Power. Sources 505, 229860 (2021). https://doi.org/10.1016/j.jpowsour.2021.229860

    Article  CAS  Google Scholar 

  58. A. Fu, C. Wang, J. Peng, M. Su, F. Pei, J. Cui, X. Fang, J.-F. Li, N. Zheng, Adv. Funct. Mater. 31, 2009805 (2021). https://doi.org/10.1002/adfm.202009805

    Article  CAS  Google Scholar 

  59. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  ADS  CAS  Google Scholar 

  60. F.-N. Jiang, S.-J. Yang, H. Liu, X.-B. Cheng, L. Liu, R. Xiang, Q. Zhang, S. Kaskel, J.-Q. Huang, SusMat 1, 506 (2021). https://doi.org/10.1002/sus2.37

    Article  CAS  Google Scholar 

  61. X.-R. Chen, C. Yan, J.-F. Ding, H.-J. Peng, Q. Zhang, J. Energy Chem. 62, 289 (2021). https://doi.org/10.1016/j.jechem.2021.03.048

    Article  CAS  Google Scholar 

  62. W. Hu, Y. Yao, X. Huang, S. Ju, Z. Chen, M. Li, Y. Wu, A.C.S. Appl, Energy Mater. 5, 3773 (2022). https://doi.org/10.1021/acsaem.2c00218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2022R1A2C2010451), and by a grant funded by the Ministry of Trade, Industry and Energy (00155725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heejoon Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8050 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S., Song, H., Kim, S. et al. Synergistic effect of embossed Cu current collector and potassium nitrate for achieving dense lithium deposition and improving cycle life in anode-free Li metal batteries. J. Korean Ceram. Soc. 61, 267–278 (2024). https://doi.org/10.1007/s43207-023-00354-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00354-w

Keywords

Navigation