Skip to main content
Log in

Nanoscopic Post-Compression Effects on Transport Phenomena and Electrochemical Utilization in Quaternion Catalyst Layers for Fuel Cell Applications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This study aimed to determine nanoscopic interactions between constituent distributions and effective transport processes in pre- and post-compressed catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs) to improve cell performance and reduce cell cost. To this end, quaternion CLs were reconstructed with carbon black-supported platinum, proton-conductive ionomer, and gas-transporting pores. The percolation cluster labeling method was implemented to estimate the interconnectivity of Pt/C, ionomer, and the gas-transporting void phase in pre- and post-compressed CLs with a 98% confidence level. The effect of compression on the interconnectivity of Pt/C, ionomer, and pores was examined for a range of ionomer-to-carbon (I/C) weight ratios. Next, lattice Boltzmann direct numerical simulations (LB-DNSs) with fine-lattice grids were introduced to estimate the reactant gas transport characteristics for the pre- and post-compressed CLs. The results indicate that the dead pore fraction and the tortuosity of the void phase are directly proportional to compression, whereas the permeability of the CL is inversely proportional to compression. Subsequently, the morphology-based and the transport-based effective catalyst utilization factors (M- and T-ECUFs) were compared as a function of the I/C ratio under various compression conditions. Detailed simulations further revealed that the M-ECUF, representing the ideal catalyst utilization case for an electrochemical reaction, usually appears to be greater than the T-ECUF and compression has a positive effect on ECUF, particularly for low I/C ratios, because of reduced local resistance on the surface of the catalyst by compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Abbreviations

c :

Lattice speed

d :

Pore diameter, m

D :

Diffusion coefficient, m2/s

e :

Directional matrix

f :

Density distribution function

I/C :

Ionomer-to-carbon ratio

IR :

Interconnectivity ratio

k :

Boltzmann constant, J/K

K :

Intrinsic permeability, m2

l :

Through-plane direction thickness

L :

Characteristic length, m

m :

Mass in a unit volume of the catalyst layer, g/cm3

M :

Molar mass, kg/mol

P :

Static pressure, N/m2

PF :

Platinum fraction parameters

R :

Universal gas constant, J/mol K

t :

Lattice time

T :

Thermodynamic temperature, K

u :

Velocity, m/s

x :

Abscissa in the in-plane direction

X :

Mass fraction

y :

Ordinate in the in-plane direction

z :

Through-plane direction

\(\gamma\) :

Loading of the component, mg/cm2

\(\rho\) :

Density, g/cm3

\(\phi\) :

Volume fraction

\(\tau\) :

Relaxation time

\(\omega\) :

Weight factor

\(\nu\) :

Kinematic viscosity, m2/s

\(\lambda\) :

Mean free path, m

\(\sigma\) :

Effective cross-sectional area for collision, m2

\(\mu\) :

Dynamic viscosity, kg/m s

\(\Gamma\) :

Effective catalyst utilization factor

c :

Carbon

eff :

Effective value

eq :

Equilibrium

in :

Ionomer

pore :

Pore

porosity :

Bulk porosity

pt :

Platinum

avg :

Average value

B :

Boltzmann constant value

c :

Carbon

CL :

Catalyst layer

e :

Streamline in a pore structure

EA :

Electron-accessed value

Gas :

Gas phase value

GE :

Gas-exposed value

i :

D3Q19 lattice direction

in :

Ionomer

Kn :

Knudsen value

lattice :

Lattice Boltzmann method value

M :

Morphology-based effective value

Mfp :

Mean free path

N 2 :

Nitrogen value

O 2 :

Oxygen value

PA :

Proton-accessed

Pt :

Platinum

Pt/C :

Platinum/carbon

r :

Lattice Boltzmann method relaxation value

s :

Speed of sound

total :

Total value of nanoparticles

T :

Transport-based effective value

x :

Abscissa in the in-plane direction

y :

Ordinate in the in-plane direction

z :

Through-plane direction

w :

Wall value

References

  1. Chen, L., He, A., Zhao, J., Kang, Q., Li, Z. Y., Carmeliet, J., Shikazono, N., & Tao, W. Q. (2022). Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 88, 100968. https://doi.org/10.1016/J.PECS.2021.100968

    Article  Google Scholar 

  2. Fu, Y. L., Zhang, B., Zhu, X., Ye, D. D., Sui, P. C., & Djilali, N. (2020). Pore-scale modeling of oxygen transport in the catalyst layer of air-breathing cathode in membraneless microfluidic fuel cells. Applied Energy, 277, 115536. https://doi.org/10.1016/J.APENERGY.2020.115536

    Article  CAS  Google Scholar 

  3. Deng, X., Zhang, J., Fan, Z., Tan, W., Yang, G., Wang, W., Zhou, W., & Shao, Z. (2020). Understanding and engineering of multiphase transport processes in membrane electrode assembly of proton-exchange membrane fuel cells with a focus on the cathode catalyst layer: A review. Energy & Fuels., 34, 9175–9188. https://doi.org/10.1021/ACS.ENERGYFUELS.0C02101

    Article  CAS  Google Scholar 

  4. Deng, H., Hou, Y., Chen, W., Pan, F., & Jiao, K. (2019). Lattice Boltzmann simulation of oxygen diffusion and electrochemical reaction inside catalyst layer of PEM fuel cells. International Journal of Heat and Mass Transfer, 143, 118538. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118538

    Article  CAS  Google Scholar 

  5. Satjaritanun, P., Hirano, S., Zenyuk, I. V., Weidner, J. W., Tippayawong, N., & Shimpalee, S. (2020). Numerical study of electrochemical kinetics and mass transport inside nano-structural catalyst layer of PEMFC using lattice Boltzmann agglomeration method. Journal of the Electrochemical Society, 167, 013516. https://doi.org/10.1149/2.0162001JES/XML

    Article  ADS  CAS  Google Scholar 

  6. Inoue, G., Yokoyama, K., Ooyama, J., Terao, T., Tokunaga, T., Kubo, N., & Kawase, M. (2016). Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components. Journal of Power Sources, 327, 610–621. https://doi.org/10.1016/j.jpowsour.2016.07.107

    Article  ADS  CAS  Google Scholar 

  7. Zhang, R., He, P., Bai, F., Chen, L., & Tao, W. Q. (2021). Multiscale modeling of proton exchange membrane fuel cells by coupling pore-scale models of the catalyst layers and cell-scale models. International Journal of Green Energy, 18, 1147–1160. https://doi.org/10.1080/15435075.2021.1891912

    Article  CAS  Google Scholar 

  8. Wu, C. W., Zhang, W., Han, X., Zhang, Y. X., & Ma, G. J. (2020). A systematic review for structure optimization and clamping load design of large proton exchange membrane fuel cell stack. Journal of Power Sources, 476, 228724. https://doi.org/10.1016/J.JPOWSOUR.2020.228724

    Article  CAS  Google Scholar 

  9. Hwang, Y. S., Choi, H., Cho, G. Y., et al. (2014). Effect of compression thickness on performance of gas diffusion layer of direct methanol fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology 1, 215–221. https://doi.org/10.1007/s40684-014-0027-y

    Article  Google Scholar 

  10. Shin, S., Liu, J., Chung, S. J., & Um, S. (2020). Numerical development of concentric cylinder-shaped dual-functional catalyst structure for enhanced charge transport in polymer electrolyte fuel cells. Advanced Theory and Simulations, 3, 2000096. https://doi.org/10.1002/adts.202000096

    Article  CAS  Google Scholar 

  11. Shin, S., Liu, J., Akbar, A., & Um, S. (2019). Nanoscale transport characteristics and catalyst utilization of vertically aligned carbon nanotube catalyst layers for fuel cell applications: Comprehensive stochastic modeling of composite morphological structures. Journal of Catalysis, 377, 465–479. https://doi.org/10.1016/J.JCAT.2019.07.053

    Article  CAS  Google Scholar 

  12. Shin, S., Kim, A. R., & Um, S. (2016). Integrated statistical and nano-morphological study of effective catalyst utilization in vertically aligned carbon nanotube catalyst layers for advanced fuel cell applications. Electrochimica Acta, 207, 187–197. https://doi.org/10.1016/j.electacta.2016.04.178

    Article  CAS  Google Scholar 

  13. Shin, S., Kim, A. R., & Um, S. (2018). Computational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann method. Electrochimica Acta, 275, 87–99. https://doi.org/10.1016/j.electacta.2018.04.138

    Article  CAS  Google Scholar 

  14. Shin, S., Kim, A. R., & Um, S. (2016). Statistical prediction of fuel cell catalyst effectiveness: Quasi-random nano-structural analysis of carbon sphere-supported platinum catalysts. International Journal of Hydrogen Energy, 41, 9507–9520. https://doi.org/10.1016/j.ijhydene.2016.04.013

    Article  CAS  Google Scholar 

  15. Kang, H., Kwon, S. H., Lawler, R., Lee, J. H., Doo, G., Kim, H. T., Yim, S. D., Jang, S. S., & Lee, S. G. (2020). Nanostructures of Nafion film at platinum/carbon surface in catalyst layer of PEMFC: Molecular dynamics simulation approach. Journal of Physical Chemistry C, 124, 21386–21395. https://doi.org/10.1021/ACS.JPCC.0C03651/SUPPL_FILE/JP0C03651_SI_001.PDF

    Article  CAS  Google Scholar 

  16. Inoue, G., Ohnishi, T., So, M., Park, K., Ono, M., & Tsuge, Y. (2019). Simulation of carbon black aggregate and evaluation of ionomer structure on carbon in catalyst layer of polymer electrolyte fuel cell. Journal of Power Sources, 439, 227060. https://doi.org/10.1016/j.jpowsour.2019.227060

    Article  CAS  Google Scholar 

  17. Wang, G., Mukherjee, P. P., & Wang, C. Y. (2006). Direct numerical simulation (DNS) modeling of PEFC electrodes: Part I. Regular microstructure. Electrochimica Acta, 51, 3139–3150. https://doi.org/10.1016/J.ELECTACTA.2005.09.002

    Article  CAS  Google Scholar 

  18. Wang, G., Mukherjee, P. P., & Wang, C. Y. (2006). Direct numerical simulation (DNS) modeling of PEFC electrodes: Part II. Random microstructure. Electrochimica Acta, 51, 3151–3160. https://doi.org/10.1016/J.ELECTACTA.2005.09.003

    Article  CAS  Google Scholar 

  19. Mukherjee, P. P., & Wang, C.-Y. (2006). Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. Journal of the Electrochemical Society, 153, A840. https://doi.org/10.1149/1.2179303/XML

    Article  CAS  Google Scholar 

  20. Wang, G., Mukherjee, P. P., & Wang, C. Y. (2007). Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling. Electrochimica Acta, 52, 6367–6377. https://doi.org/10.1016/J.ELECTACTA.2007.04.073

    Article  CAS  Google Scholar 

  21. Kok, M. D. R., Jervis, R., Tranter, T. G., Sadeghi, M. A., Brett, D. J. L., Shearing, P. R., & Gostick, J. T. (2019). Mass transfer in fibrous media with varying anisotropy for flow battery electrodes: Direct numerical simulations with 3D X-ray computed tomography. Chemical Engineering Science, 196, 104–115. https://doi.org/10.1016/j.ces.2018.10.049

    Article  ADS  CAS  Google Scholar 

  22. Suter, T. A. M., Smith, K., Hack, J., Rasha, L., Rana, Z., Angel, G. M. A., Shearing, P. R., Miller, T. S., & Brett, D. J. L. (2021). Engineering catalyst layers for next-generation polymer electrolyte fuel cells: A review of design, materials, and methods. Advanced Energy Materials, 11, 2101025. https://doi.org/10.1002/AENM.202101025

    Article  CAS  Google Scholar 

  23. Sun, X., Yu, H., Zhou, L., Gao, X., Zeng, Y., Yao, D., He, L., & Shao, Z. (2020). Influence of platinum dispersity on oxygen transport resistance and performance in PEMFC. Electrochimica Acta, 332, 135474. https://doi.org/10.1016/J.ELECTACTA.2019.135474

    Article  CAS  Google Scholar 

  24. Chen, L., Zhang, R., Kang, Q., & Tao, W. Q. (2020). Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer. Chemical Engineering Journal, 391, 123590. https://doi.org/10.1016/j.cej.2019.123590

    Article  CAS  Google Scholar 

  25. Chen, L., Zhang, R., Min, T., Kang, Q., & Tao, W. (2018). Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media. Chemical Engineering Journal, 349, 428–437. https://doi.org/10.1016/J.CEJ.2018.05.106

    Article  CAS  Google Scholar 

  26. Liu, J., Chung, S. J., Akbar, A., et al. (2022). Morphological effects of polytetrafluoroethylene meniscus formation on microscopic transport properties of inhomogeneous random porous gas diffusion media for electrochemical applications. International Journal of Precision Engineering and Manufacturing-Green Technology 9, 1101–1119. https://doi.org/10.1007/s40684-021-00361-4

    Article  Google Scholar 

  27. Chen, L., Zhang, R., He, P., Kang, Q., He, Y. L., & Tao, W. Q. (2018). Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources, 400, 114–125. https://doi.org/10.1016/j.jpowsour.2018.07.099

    Article  ADS  CAS  Google Scholar 

  28. Akbar, A., & Um, S. (2022). Influence of external clamping pressure on nanoscopic mechanical deformation and catalyst utilization of quaternion PtC catalyst layers for PEMFCs. Renewable Energy, 194, 195–210. https://doi.org/10.1016/J.RENENE.2022.05.112

    Article  CAS  Google Scholar 

  29. Zheng, B., Wang, Z., & Wang, Y. (2022). Porous media flow field for polymer electrolyte membrane fuel cell: Depression of gas diffusion layer intrusion, deformation, and delamination. International Journal of Energy Research. https://doi.org/10.1002/ER.7630

    Article  Google Scholar 

  30. Wang, Y. J., Fang, B., Li, H., Bi, X. T., & Wang, H. (2016). Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Progress in Materials Science, 82, 445–498. https://doi.org/10.1016/J.PMATSCI.2016.06.002

    Article  CAS  Google Scholar 

  31. Li, W. Z., Yang, W. W., Zhang, W. Y., Qu, Z. G., & He, Y. L. (2019). Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation. International Journal of Hydrogen Energy, 44, 22194–22209. https://doi.org/10.1016/J.IJHYDENE.2019.06.187

    Article  CAS  Google Scholar 

  32. Atyabi, S. A., Afshari, E., Wongwises, S., Yan, W. M., Hadjadj, A., & Shadloo, M. S. (2019). Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy, 179, 490–501. https://doi.org/10.1016/j.energy.2019.05.031

    Article  CAS  Google Scholar 

  33. Li, S., & Sundén, B. (2018). Effects of gas diffusion layer deformation on the transport phenomena and performance of PEM fuel cells with interdigitated flow fields. International Journal of Hydrogen Energy, 43, 16279–16292. https://doi.org/10.1016/J.IJHYDENE.2018.07.064

    Article  CAS  Google Scholar 

  34. Tanaka, S., Bradfield, W. W., Legrand, C., & Malan, A. G. (2016). Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells. Journal of Power Sources, 330, 273–284. https://doi.org/10.1016/J.JPOWSOUR.2016.08.121

    Article  ADS  CAS  Google Scholar 

  35. Froning, D., Brinkmann, J., Reimer, U., Schmidt, V., Lehnert, W., & Stolten, D. (2013). 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the lattice Boltzmann method. Electrochimica Acta, 110, 325–334. https://doi.org/10.1016/j.electacta.2013.04.071

    Article  CAS  Google Scholar 

  36. Mason, T. J., Millichamp, J., Neville, T. P., El-Kharouf, A., Pollet, B. G., & Brett, D. J. L. (2012). Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells. Journal of Power Sources, 219, 52–59. https://doi.org/10.1016/j.jpowsour.2012.07.021

    Article  ADS  CAS  Google Scholar 

  37. Malekian, A., Salari, S., Tam, M., Oldknow, K., Djilali, N., & Bahrami, M. (2019). Compressive behaviour of thin catalyst layers. Part I—Experimental study. International Journal of Hydrogen Energy, 44, 18450–18460. https://doi.org/10.1016/J.IJHYDENE.2019.04.134

    Article  CAS  Google Scholar 

  38. Malekian, A., Salari, S., Tam, M., Djilali, N., & Bahrami, M. (2019). Compressive behaviour of thin catalyst layers. Part II—Model development and validation. International Journal of Hydrogen Energy, 44, 18461–18471. https://doi.org/10.1016/j.ijhydene.2019.04.135

    Article  CAS  Google Scholar 

  39. Malekian, A., Salari, S., Stumper, J., Djilali, N., & Bahrami, M. (2019). Effect of compression on pore size distribution and porosity of PEM fuel cell catalyst layers. International Journal of Hydrogen Energy, 44, 23396–23405. https://doi.org/10.1016/j.ijhydene.2019.07.036

    Article  CAS  Google Scholar 

  40. Zhang, H., Rahman, M. A., Mojica, F., Sui, P. C., & Chuang, P. A. (2021). A comprehensive two-phase proton exchange membrane fuel cell model coupled with anisotropic properties and mechanical deformation of the gas diffusion layer. Electrochimica Acta, 382, 138273. https://doi.org/10.1016/J.ELECTACTA.2021.138273

    Article  CAS  Google Scholar 

  41. Qiao, Z., Wang, C., Zeng, Y., Spendelow, J. S., & Wu, G. (2021). Advanced nanocarbons for enhanced performance and durability of platinum catalysts in proton exchange membrane fuel cells. Small (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/smll.202006805

    Article  PubMed  Google Scholar 

  42. Kobayashi, A., Fujii, T., Harada, C., Yasumoto, E., Takeda, K., Kakinuma, K., & Uchida, M. (2021). Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability. ACS Applied Energy Materials 4, 2307–2317. https://doi.org/10.1021/ACSAEM.0C02841

    Article  CAS  Google Scholar 

  43. Yakovlev, Y. V., Lobko, Y. V., Vorokhta, M., Nováková, J., Mazur, M., Matolínová, I., & Matolín, V. (2021). Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. Journal of Power Sources, 490, 229531. https://doi.org/10.1016/J.JPOWSOUR.2021.229531

    Article  CAS  Google Scholar 

  44. Ott, S., Orfanidi, A., Schmies, H., Anke, B., Nong, H. N., Hübner, J., Gernert, U., Gliech, M., Lerch, M., & Strasser, P. (2019). Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nature Materials, 19(1), 77–85. https://doi.org/10.1038/s41563-019-0487-0

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Van Dao, D., Adilbish, G., Lee, I. H., & Yu, Y. T. (2019). Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC. International Journal of Hydrogen Energy, 44, 24580–24590. https://doi.org/10.1016/J.IJHYDENE.2019.07.156

    Article  Google Scholar 

  46. Inaba, M., Jensen, A. W., Sievers, G. W., Escudero-Escribano, M., Zana, A., & Arenz, M. (2018). Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy & Environmental Science, 11, 988–994. https://doi.org/10.1039/C8EE00019K

    Article  CAS  Google Scholar 

  47. Akbar, A., Liu, J., Chung, S.-J., & Um, S. (2021). Statistical characterization of non-linear microscopic mechanical deformation through randomly oriented fibrous porous transport layers for advanced electrochemical energy systems. Renewable Energy, 178, 1106–1118. https://doi.org/10.1016/J.RENENE.2021.07.005

    Article  CAS  Google Scholar 

  48. Arora, K. R. (1989). Soil mechanics and foundation engineering. Standard Publishers.

    Google Scholar 

  49. Cetinbas, F. C., Ahluwalia, R. K., Kariuki, N., De Andrade, V., Fongalland, D., Smith, L., Sharman, J., Ferreira, P., Rasouli, S., & Myers, D. J. (2017). Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes. Journal of Power Sources, 344, 62–73. https://doi.org/10.1016/j.jpowsour.2017.01.104

    Article  ADS  CAS  Google Scholar 

  50. Yin, Y., Wu, S., Qin, Y., Liu, Y., & Zhang, J. (2021). Evaluating the effective diffusion coefficient of reactant gas in the catalyst layer of PEMFC using the fractal method considering the pore size distribution. Nano Select, 2, 116–120. https://doi.org/10.1002/NANO.202000136

    Article  CAS  Google Scholar 

  51. Guan, S., Zhou, F., Tan, J., & Pan, M. (2020). Influence of pore size optimization in catalyst layer on the mechanism of oxygen transport resistance in PEMFCs. Progress in Natural Science: Materials International, 30, 839–845. https://doi.org/10.1016/J.PNSC.2020.08.017

    Article  CAS  Google Scholar 

  52. Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry Research, 58, 18–27. https://doi.org/10.1021/ie50677a007

    Article  CAS  Google Scholar 

  53. Liu, J., Shin, S., & Um, S. (2019). Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications. Renewable Energy, 139, 279–291. https://doi.org/10.1016/j.renene.2019.02.089

    Article  CAS  Google Scholar 

  54. Sharma, R., & Andersen, S. M. (2018). Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catalysis, 8, 3424–3434. https://doi.org/10.1021/ACSCATAL.8B00002/SUPPL_FILE/CS8B00002_SI_001.PDF

    Article  CAS  Google Scholar 

  55. Gwak, G., Lee, J., Ghasemi, M., Choi, J., Lee, S. W., Jang, S. S., & Ju, H. (2020). Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 45, 13414–13427. https://doi.org/10.1016/J.IJHYDENE.2020.03.080

    Article  CAS  Google Scholar 

  56. Tjaden, B., Cooper, S. J., Brett, D. J. L., Kramer, D., & Shearing, P. R. (2016). On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Current Opinion in Chemical Engineering., 12, 44–51. https://doi.org/10.1016/j.coche.2016.02.006

    Article  Google Scholar 

  57. Yu, Z., & Carter, R. N. (2010). Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. Journal of Power Sources, 195, 1079–1084. https://doi.org/10.1016/J.JPOWSOUR.2009.08.065

    Article  ADS  CAS  Google Scholar 

  58. Braaten, J. P., Kariuki, N. N., Myers, D. J., Blackburn, S., Brown, G., Park, A., & Litster, S. (2022). Integration of a high oxygen permeability ionomer into polymer electrolyte membrane fuel cell cathodes for high efficiency and power density. Journal of Power Sources, 522, 230821. https://doi.org/10.1016/J.JPOWSOUR.2021.230821

    Article  CAS  Google Scholar 

  59. Keller, N., & von Unwerth, T. (2022). Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC. Applied Energy, 307, 118132. https://doi.org/10.1016/J.APENdERGY.2021.118132

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute for Advancement of Technology [Grant Number 1415183958 (P0018649)]; Korea Institute of Energy Technology Evaluation and Planning [Grant Number 1415181294 (20223030030110)]; and the Korea Evaluation Institute of Industrial Technology [Grant Number 1415186266 (20012133)].

Author information

Authors and Affiliations

Authors

Contributions

SP conceptualization, methodology, validation, investigation, writing. AA data curation, resources, software, visualization, writing. JL visualization, software. Y-BK visualization. SU conceptualization, investigation, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Sukkee Um.

Ethics declarations

Conflict of interest

The author declares that there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Akbar, A., Lee, J. et al. Nanoscopic Post-Compression Effects on Transport Phenomena and Electrochemical Utilization in Quaternion Catalyst Layers for Fuel Cell Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 463–479 (2024). https://doi.org/10.1007/s40684-023-00564-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00564-x

Keywords

Navigation