Skip to main content
Log in

Effect of Baffle Pattern Applied to Cathode Parallel Channel on PEMFC Performance

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Many efforts have been made to improve the performance of polymer electrolyte membrane fuel cells (PEMFCs). One approach has been the enhancement of the mass transport property by applying various channel designs and modifying them. Of those channels, the parallel channel as applied in PEMFCs has a low pressure drop and poor mass transfer property. To improve the mass transfer, a baffle that forces the reactant flow into the gas diffusion layer (GDL) from the channel can be installed in the parallel channel. In this study, various parallel channels designed with different baffle patterns and the effect was assessed by the PEMFC performance. All the baffle patterns analyzed in this study improved the performance of the PEMFC. However, depending on the baffle pattern, the reactant transfer and the current density of the PEMFC were affected differently. The staggered baffle pattern showed the best PEMFC performance among the analyzed models; when the staggered pattern was located near the outlet and the gap between the staggered baffles was wide, the PEMFC performance was further improved and the pressure drop of the cathode flow field was also lower than with the other baffle patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Young-Beom Kim, upon reasonable request.

References

  1. Hamilton, P. J., & Pollet, B. G. (2010). Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation. Fuel Cells, 10(4), 489–509. https://doi.org/10.1002/fuce.201000033

    Article  Google Scholar 

  2. Garraín, D., Lechón, Y., & Cdl, Rúa. (2011). Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage. Smart Grid and Renewable Energy. https://doi.org/10.4236/sgre.2011.22009

    Article  Google Scholar 

  3. Moreno, N. G., Molina, M. C., & Gervasio, D. (2015). Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renewable & Sustainable Energy Reviews, 52, 897–906. https://doi.org/10.1016/j.rser.2015.07.157

    Article  Google Scholar 

  4. Saadi, A., Becherif, M., & Hissel, D. (2017). Dynamic modeling and experimental analysis of PEMFCs: a comparative study. International Journal of Hydrogen Energy, 42(2), 1544–1557. https://doi.org/10.1016/j.ijhydene.2016.07.180

    Article  Google Scholar 

  5. Lu, X. Q., Qu, Y., Wang, Y. D., Qin, C., & Liu, G. (2018). A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Conversion and Management, 171, 1273–1291. https://doi.org/10.1016/j.enconman.2018.06.065.

    Article  Google Scholar 

  6. Saco, S. A., Raj, R. T., & K.&Karthikeyan, P. (2016). A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique. Energy, 113, 558–573. https://doi.org/10.1016/j.energy.2016.07.079.

    Article  Google Scholar 

  7. Rostami, L., Nejad, P. M. G., & Vatani, A. (2016). A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy, 97, 400–410. https://doi.org/10.1016/j.energy.2015.10.132.

    Article  Google Scholar 

  8. Chowdhury, M. Z., & Timurkutluk, B. (2018). Transport phenomena of convergent and divergent serpentine flow fields for PEMFC. Energy, 161, 104–117. https://doi.org/10.1016/j.energy.2018.07.143.

    Article  Google Scholar 

  9. Chowdhury, M. Z., & Genc, O. (2018). Numerical optimization of channel to land width ratio for PEM fuel cell. International Journal of Hydrogen Energy, 43(23), 10798–10809. https://doi.org/10.1016/j.ijhydene.2017.12.149.

    Article  Google Scholar 

  10. Rahimi-Esbo, M., Ranjbar, A. A., Ramiar, A., Alizadeh, E., & Aghaee, M. (2016). Improving PEM fuel cell performance and effective water removal by using a novel gas flow field. International Journal of Hydrogen Energy, 41(4), 3023–3037. https://doi.org/10.1016/j.ijhydene.2015.11.001.

    Article  Google Scholar 

  11. Cooper, N. J., Smith, T., & Santamaria, A. D. (2016). Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry. International Journal of Hydrogen Energy, 41(2), 1213–1223. https://doi.org/10.1016/j.ijhydene.2015.11.153.

    Article  Google Scholar 

  12. Liu, S. H., Chen, T., Xie, Y., Zhang, J. W., & Wu, C. Q. (2019). Numerical simulation and experimental study on the effect of symmetric and asymmetric bionic flow channels on PEMFC performance under gravity. International Journal of Hydrogen Energy, 44(56), 29618–29630. https://doi.org/10.1016/j.ijhydene.2019.06.046.

    Article  Google Scholar 

  13. Kang, H. C., Jum, K. M., & Sohn, Y. J. (2019). Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate. International Journal of Hydrogen Energy, 44(43), 24036–24042. https://doi.org/10.1016/j.ijhydene.2019.07.120.

    Article  Google Scholar 

  14. Atyabi, S. A., & Afshari, E. (2019). Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. Journal of Cleaner Production, 214, 738–748. https://doi.org/10.1016/j.jclepro.2018.12.293.

    Article  Google Scholar 

  15. Wen, D. H., Yin, L. Z., Piao, Z. Y., Lu, C. D., & Li, G. (2018). Performance investigation of proton exchange membrane fuel cell with intersectant flow field. International Journal of Heat and Mass Transfer, 121, 775–787. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.053.

    Article  Google Scholar 

  16. Zhang, G. B., Xie, B., Bao, Z. M., Niu, Z. Q., & Jiao, K. (2018). Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research, 42(15), 4697–4709. https://doi.org/10.1002/er.4215.

    Article  Google Scholar 

  17. Bao, Z. M., Niu, Z. Q., & Jiao, K. (2019). Analysis of single- and two-phase flow characteristics of 3-D fine mesh flow field of proton exchange membrane fuel cells. Journal of Power Sources, 438, 226995.

    Article  Google Scholar 

  18. Niu, Z. Q., Fan, L. H., Bao, Z. M., & Jiao, K. (2018). Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell. International Journal of Energy Research, 42(10), 3328–3338. https://doi.org/10.1002/er.4086

    Article  Google Scholar 

  19. Perng, S. W., Wu, H. W., Chen, Y. B., & Zeng, Y. K. (2019). Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels. Applied Energy, 255, 113815.

    Article  Google Scholar 

  20. Wu, H. W. (2011). The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method. Applied Energy, 88(12), 4879–4890. https://doi.org/10.1016/j.apenergy.2011.06.034.

    Article  MathSciNet  Google Scholar 

  21. Liu, H. C., Yan, W. M., Soong, C. Y., & Chen, F. L. (2005). Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell. Journal of Power Sources, 142(1–2), 125–133. https://doi.org/10.1016/j.jpowsour.2004.09.037.

    Article  Google Scholar 

  22. Heidary, H., Kermani, M. J., & Dabir, B. (2016). Influences of bipolar plate channel blockages on PEM fuel cell performances. Energy Conversion and Management, 124, 51–60. https://doi.org/10.1016/j.enconman.2016.06.043.

    Article  Google Scholar 

  23. Yin, Y., Wang, X. F., Xiang, S. G., Zhang, J. F., & Qin, Y. Z. (2018). Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. International Journal of Hydrogen Energy, 43(16), 8048–8062. https://doi.org/10.1016/j.ijhydene.2018.03.037.

    Article  Google Scholar 

  24. Yin, Y., Wang, X. F., Zhang, J. F., Xiang, S. G., & Qin, Y. Z. (2019). Influence of sloping baffle plates on the mass transport and performance of PEMFC. International Journal of Energy Research, 43(7), 2643–2655. https://doi.org/10.1002/er.4306.

    Article  Google Scholar 

  25. Zhang, G. B., Fan, L. H., Sun, J., & Jiao, K. (2017). A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. International Journal of Heat and Mass Transfer, 115, 714–724. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102.

    Article  Google Scholar 

  26. Wang, B. W., Chen, W. M., Pan, F. W., Wu, S. Y., Zhang, G. B., Park, J. W., Xie, B., Yin, Y., & Jiao, K. (2019). A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell. Journal of Power Sources, 434, 226741.

    Article  Google Scholar 

  27. Perng, S. W., & Wu, H. W. (2015). A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC. Applied Energy, 143, 81–95. https://doi.org/10.1016/j.apenergy.2014.12.059.

    Article  Google Scholar 

  28. Houreh, N. B., Shokouhmand, H., & Afshari, E. (2019). Effect of inserting obstacles in flow field on a membrane humidifier performance for PEMFC application: A CFD model. International Journal of Hydrogen Energy, 44(57), 30420–30439. https://doi.org/10.1016/j.ijhydene.2019.09.189.

    Article  Google Scholar 

  29. Guo, H., Chen, H., & Ye, F. (2019). Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels. International Journal of Energy Research, 43(7), 2737–2755. https://doi.org/10.1002/er.4328.

    Article  Google Scholar 

  30. Perng, S. W. (2011). Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel. Applied Energy, 88(1), 52–67. https://doi.org/10.1016/j.apenergy.2010.07.006.

    Article  Google Scholar 

  31. Li, W. K., Zhang, Q. L., Wang, C., Yan, X. H., Shen, S. Y., Xia, G. F., Zhu, F. J., & Zhang, J. L. (2017). Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Applied Energy, 195, 278–288. https://doi.org/10.1016/j.apenergy.2017.03.008.

    Article  Google Scholar 

  32. Sun, F., Su, D. D., Yin, Y. J., & Pang, B. (2022). Effects of combined baffles on the proton exchange membrane fuel cell performance. International Journal of Electrochemical Science. https://doi.org/10.20964/2022.11.18

    Article  Google Scholar 

  33. Huang, Y., Song, J. N., Deng, X. Y., Chen, S., Zhang, X., Ma, Z. P., Chen, L. J., & Wu, Y. L. (2023). Numerical investigation of baffle shape effects on performance and mass transfer of proton exchange membrane fuel cell. Energy. https://doi.org/10.1016/j.energy.2022.126448

    Article  Google Scholar 

  34. Liu, Q., Lan, F., Chen, J., Wang, J., & Zeng, C. (2022). Flow field structure design modification with helical baffle for proton exchange membrane fuel cell. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2022.116175

    Article  Google Scholar 

  35. Zhang, S. Y., Qu, Z. G., Xu, H. T., Talkhoncheh, F. K., Liu, S., & Gao, Q. (2021). A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel. International Journal of Hydrogen Energy, 46(54), 27700–27708. https://doi.org/10.1016/j.ijhydene.2021.05.207.

    Article  Google Scholar 

  36. Cai, Y. H., Sun, J. M., Wei, F., & Chen, B. (2022). Effect of baffle dimensionless size factor on the performance of proton exchange membrane fuel cell. Energies. https://doi.org/10.3390/en15103812

    Article  Google Scholar 

  37. Heidary, H., Kermani, M. J., Advani, S. G., & Prasad, A. K. (2016). Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. International Journal of Hydrogen Energy, 41(16), 6885–6893. https://doi.org/10.1016/j.ijhydene.2016.03.028.

    Article  Google Scholar 

  38. Wang, X. F., Qin, Y. Z., Wu, S. Y., Xiang, S. G., Zhang, J. F., & Yin, Y. (2020). Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance. Journal of Power Sources. https://doi.org/10.1016/j.jpowsour.2020.228034

    Article  Google Scholar 

  39. Gostick, J. T., Fowler, M. W., Pritzker, M. D., & Ioannidis, M. A. (2006). In-plane and through-plane gas permeability of carbon fiber electrode backing layers. Journal of Power Sources, 162(1), 228–238. https://doi.org/10.1016/j.jpowsour.2006.06.096.

    Article  Google Scholar 

  40. Zhang, Z. Q., & Liu, W. (2019). Three dimensional two-phase and non-isothermal numerical simulation of multi-channels PEMFC. International Journal of Hydrogen Energy, 44(1), 379–388. https://doi.org/10.1016/j.ijhydene.2018.05.149.

    Article  Google Scholar 

  41. Li, S., Yuan, J. L., Andersson, M., Xie, G. N., & Sunden, B. (2017). Influence of anisotropic gas diffusion layers on transport phenomena in a proton exchange membrane fuel cell. International Journal of Energy Research, 41(14), 2034–2050. https://doi.org/10.1002/er.3763.

    Article  Google Scholar 

  42. Khajeh-Hosseini-Dalasm, N., Kermani, M. J., Moghaddam, D. G., & Stockie, J. M. (2010). A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell. International Journal of Hydrogen Energy, 35(6), 2417–2427. https://doi.org/10.1016/j.ijhydene.2009.12.111.

    Article  Google Scholar 

  43. Li, W. Z., Yang, W. W., Zhang, W. Y., Qu, Z. G., & He, Y. L. (2019). Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation. International Journal of Hydrogen Energy, 44(39), 22194–22209. https://doi.org/10.1016/j.ijhydene.2019.06.187.

    Article  Google Scholar 

  44. Yang, X. G., & Ye, Q. (2011). Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions. International Journal of Hydrogen Energy, 36(19), 12524–12537. https://doi.org/10.1016/j.ijhydene.2011.07.014.

    Article  Google Scholar 

  45. Lampinen, M. J., & Fomino, M. (1993). Analysis of free-energy and entropy changes for half-cell reactions. Journal of the Electrochemical Society, 140(12), 3537–3546. https://doi.org/10.1149/1.2221123

    Article  Google Scholar 

  46. Jiao, K., & Li, X. G. (2011). Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 37(3), 221–291. https://doi.org/10.1016/j.pecs.2010.06.002

    Article  MathSciNet  Google Scholar 

  47. Ye, Q. (2007). Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions. Journal of the Electrochemical Society, 154(12), B1242–B1251. https://doi.org/10.1149/1.2783775

    Article  Google Scholar 

  48. Meng, H. (2010). Numerical studies of liquid water behaviors in PEM fuel cell cathode considering transport across different porous layers. International Journal of Hydrogen Energy, 35(11), 5569–5579. https://doi.org/10.1016/j.ijhydene.2010.03.073.

    Article  Google Scholar 

  49. Um, S., & Wang, C. Y. (2000). Computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal of the Electrochemical Society, 147(12), 4485–4493. https://doi.org/10.1149/1.1394090

    Article  Google Scholar 

  50. Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer electrolyte fuel-cell model. Journal of the Electrochemical Society, 138(8), 2334–2342. https://doi.org/10.1149/1.2085971

    Article  Google Scholar 

  51. Zawodzinski, T. A., Springer, T. E., Uribe, F., & Gottesfeld, S. (1993). Characterization of Polymer Electrolytes for fuel-cell applications. Solid State Ionics, 60(1–3), 199–211. Doi 10.1016/0167–2738(93)90295-E.

    Article  Google Scholar 

  52. Tomadakis, M. M., & Robertson, T. J. (2005). Viscous permeability of random fiber structures: Comparison of electrical and diffusional estimates with experimental and analytical results. Journal of Composite Materials, 39(2), 163–188. https://doi.org/10.1177/0021998305046438.

    Article  Google Scholar 

  53. Yan, Q. G., Toghiani, H., & Causey, H. (2006). Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. Journal of Power Sources, 161(1), 492–502. https://doi.org/10.1016/j.jpowsour.2006.03.077.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20212020800090, Development and Demonstration of Energy-Efficiency Enhanced Technology for Temperature-Controlled Transportation and Logistics Center) and the Korean National Research Foundation (No.NRF-2021R1A2C2013203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Beom Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Um, S. & Kim, YB. Effect of Baffle Pattern Applied to Cathode Parallel Channel on PEMFC Performance. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 145–159 (2024). https://doi.org/10.1007/s40684-023-00534-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00534-3

Keywords

Navigation