Skip to main content
Log in

Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) has recently attracted attention as a technique to synthesize and engineer high-performance catalysts and electrodes for fuel cells. Unique advantages of the ALD process include surface conformality and film uniformity along nano-scale features and the ability to deposit one atom layer or less per deposition cycle, enabling atomic-scale modification of the composition and morphology of the material surface. Many recent reports have demonstrated the effectiveness of the ALD surface modification strategy for the development of novel fuel cell materials. For enhancement of fuel cell performance, development of superior electrocatalytic electrodes is essential as a significant portion of energy loss occurs due to the charge transfer reaction either on the surface of electrodes or at the interfaces between electrodes and electrolytes. Therefore, ALD is considered a key fabrication process to design and engineer high-performance fuel cell systems. This review covers the important recent developments advanced electrode materials for solid oxide fuel cells (SOFCs) provided by the unique abilities of ALD for surface engineering and interface modification. Performance enhancement and related mechanisms are also discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced from Ref. [57] with permission from The Electrochemical Society

Fig. 7

Reproduced from Ref. [135] with permission from American Chemical Society

Fig. 8

a Reproduced from Ref. [141] with permission from Nature. bd Reproduced from Ref. [143] with permission from Nature

Fig. 9

Reproduced from Ref. [149] with permission from American Chemical Society

Similar content being viewed by others

References

  1. Zhang, J., Zheng, C., Cha, S. W., & Duan, S. (2016). Co-state variable determination in pontryagin’s minimum principle for energy management of hybrid vehicles. International Journal of Precision Engineering and Manufacturing, 17(9), 1215–1222.

    Google Scholar 

  2. Zheng, C., & Cha, S. W. (2017). Real-time application of pontryagin’s minimum principle to fuel cell hybrid buses based on driving characteristics of buses. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 199–200.

    Google Scholar 

  3. Yi, H. S., Jeong, J. B., Cha, S. W., & Zheng, C. H. (2018). Optimal component sizing of fuel cell-battery excavator based on workload. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 103–110.

    Google Scholar 

  4. Yue, D., Pandya, S., & You, F. (2016). Integrating hybrid life cycle assessment with multiobjective optimization: a modeling framework. Environmental Science and Technology, 50(3), 1501–1509.

    Google Scholar 

  5. Ütu, F. G., & Holmes, S. M. (2011). Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use. Electrochimica Acta, 56(24), 8446–8456.

    Google Scholar 

  6. McIntosh, S., & Gorte, R. J. (2004). Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 104(10), 4845–4865.

    Google Scholar 

  7. Mogensen, M., & Kammer, K. (2003). Conversion of hydrocarbons in solid oxide fuel cells. Annual Review of Materials Science, 33, 321–331.

    Google Scholar 

  8. Park, S., Vohs, J. M., & Gorte, R. J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404(6775), 265–267.

    Google Scholar 

  9. Murray, E. P., Harris, S. J., Liu, J., & Barnett, S. A. (2006). Direct solid oxide fuel cell operation using isooctane. Electrochemical and Solid-State Letters, 9(6), A292–A294.

    Google Scholar 

  10. Primdahl, S., & Mogensen, M. (1997). Oxidation of hydrogen on ni/yttria-stabilized zirconia cermet anodes. Journal of the Electrochemical Society, 144(10), 3409–3419.

    Google Scholar 

  11. Jiang, Y., & Virkar, A. V. (2001). A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. Journal of the Electrochemical Society, 148(7), A706–A709.

    Google Scholar 

  12. Homel, M., Gür, T. M., Koh, J. H., & Virkar, A. V. (2010). Carbon monoxide-fueled solid oxide fuel cell. Journal of Power Sources, 195(19), 6367–6372.

    Google Scholar 

  13. Gür, T. M., Homel, M., & Virkar, A. V. (2010). High performance solid oxide fuel cell operating on dry gasified coal. Journal of Power Sources, 195(4), 1085–1090.

    Google Scholar 

  14. Gür, T. M. (2013). Critical review of carbon conversion in carbon fuel cells. Chemical Reviews, 113(8), 6179–6206.

    Google Scholar 

  15. Evans, A., Bieberle-Hütter, A., Rupp, J. L. M., & Gauckler, L. J. (2009). Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 194(1), 119–129.

    Google Scholar 

  16. Cassir, M., Ringuedé, A., & Niinistö, L. (2010). Input of atomic layer deposition for solid oxide fuel cell applications. Journal of Materials Chemistry, 20(41), 8987–8993.

    Google Scholar 

  17. Elam, J. W., Dasgupta, N. P., & Prinz, F. B. (2011). ALD for clean energy conversion, utilization, and storage. MRS Bulletin, 36(11), 899–906.

    Google Scholar 

  18. Peng, Q., Lewis, J. S., Hoertz, P. G., Glass, J. T., & Parsons, G. N. (2012). Atomic layer deposition for electrochemical energy generation and storage systems. Journal of Vacuum Science and Technology A, 30(1), 010803.

    Google Scholar 

  19. Shim, J. H., Kang, S., Cha, S. W., Lee, W., Kim, Y. B., Park, J. S., et al. (2013). Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells. Journal of Materials Chemistry A, 1(41), 12695–12705.

    Google Scholar 

  20. Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 17(5), 236–246.

    Google Scholar 

  21. An, J., Shim, J. H., Kim, Y. B., Park, J. S., Lee, W., Gür, T. M., et al. (2014). MEMS-based thin-film solid-oxide fuel cells. MRS Bulletin, 39(9), 798–804.

    Google Scholar 

  22. Oneill, B. J., Jackson, D. H. K., Lee, J., Canlas, C., Stair, P. C., Marshall, C. L., et al. (2015). Catalyst design with atomic layer deposition. ACS Catalysis, 5(3), 1804–1825.

    Google Scholar 

  23. Tanveer, W. H., Ji, S., Yu, W., & Cha, S. W. (2015). Characterization of atomic layer deposited and sputtered yttria-stabilized-zirconia thin films for low-temperature solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing, 16(10), 2229–2234.

    Google Scholar 

  24. Lu, J., Elam, J. W., & Stair, P. C. (2016). Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf Sci Rep, 71(2), 410–472.

    Google Scholar 

  25. Cheng, N., Shao, Y., Liu, J., & Sun, X. (2016). Electrocatalysts by atomic layer deposition for fuel cell applications. Nano Energy, 29, 220–242.

    Google Scholar 

  26. Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., Kim, Y. B., et al. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 35–39.

    Google Scholar 

  27. Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W. H., et al. (2018). Thin film solid oxide fuel cells operating below 600°C: a review. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 441–453.

    Google Scholar 

  28. Suntola, T. (1992). Atomic layer epitaxy. Thin Solid Films, 216(1), 84–89.

    Google Scholar 

  29. George, S. M., Ott, A. W., & Klaus, J. W. (1996). Surface chemistry for atomic layer growth. Journal of Physical Chemistry, 100(31), 13121–13131.

    Google Scholar 

  30. Hurle, D. T. (1993). Handbook of crystal growth. Amsterdam: North Holland.

    Google Scholar 

  31. Goodman, C. H. L., & Pessa, M. V. (1986). Atomic layer epitaxy. Journal of Applied Physics, 60(3), R65–R82.

    Google Scholar 

  32. Ritala, M., & Leskelä, M. (1999). Atomic layer epitaxy—a valuable tool for nanotechnology? Nanotechnology, 10(1), 19–24.

    Google Scholar 

  33. Nalwa, H. S. (2001). Handbook of thin films. Massachusetts: Academic Press.

    Google Scholar 

  34. Leskelä, M., & Ritala, M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 409(1), 138–146.

    Google Scholar 

  35. Kim, H. (2003). Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. Journal of Vacuum Science and Technology B, 21(6), 2231–2261.

    Google Scholar 

  36. Leskelä, M., & Ritala, M. (2003). Atomic layer deposition chemistry: recent developments and future challenges. Angewandte Chemie International Edition, 42(45), 5548–5554.

    Google Scholar 

  37. Niinistö, L., Päiväsaari, J., Niinistö, J., Putkonen, M., & Nieminen, M. (2004). Advanced electronic and optoelectronic materials by atomic layer deposition: an overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Physica Status Solidi A, 201(7), 1443–1452.

    Google Scholar 

  38. Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. Journal of Applied Physics, 97(12), 9.

    Google Scholar 

  39. Knez, M., Nielsch, K., & Niinistö, L. (2007). Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials, 19(21), 3425–3438.

    Google Scholar 

  40. Kim, H., Lee, H. B. R., & Maeng, W. J. (2009). Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 517(8), 2563–2580.

    Google Scholar 

  41. George, S. M. (2010). Atomic layer deposition: an overview. Chemical Reviews, 110(1), 111–131.

    Google Scholar 

  42. Detavernier, C., Dendooven, J., Pulinthanathu Sree, S., Ludwig, K. F., & Martens, J. A. (2011). Tailoring nanoporous materials by atomic layer deposition. Chemical Society Reviews, 40(11), 5242–5253.

    Google Scholar 

  43. Shim, J. H., Choi, H. J., Kim, Y., Torgersen, J., An, J., Lee, M. H., et al. (2017). Process-property relation in high-k ALD SrTiO3 and BaTiO3: a review. Journal of Materials Chemistry C, 5(32), 8000–8013.

    Google Scholar 

  44. Marichy, C., Bechelany, M., & Pinna, N. (2012). Atomic layer deposition of nanostructured materials for energy and environmental applications. Advanced Materials, 24(8), 1017–1032.

    Google Scholar 

  45. Pinna, N., & Knez, M. (2012). Atomic layer deposition of nanostructured materials. New York: Wiley.

    Google Scholar 

  46. Jiang, S. P., & Shen, P. K. (2013). Nanostructured and Advanced Materials for Fuel Cells. Boca Raton: CRC Press.

    Google Scholar 

  47. Shim, J. H., Chao, C.-C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 19(15), 3850–3854.

    Google Scholar 

  48. Brahim, C., Ringuedé, A., Cassir, M., Putkonen, M., & Niinistö, L. (2007). Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science, 253(8), 3962–3968.

    Google Scholar 

  49. Su, P.-C., Chao, C.-C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 8(8), 2289–2292.

    Google Scholar 

  50. Shim, J. H., Park, J. S., An, J., Gür, T. M., Kang, S., & Prinz, F. B. (2009). Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chemistry of Materials, 21(14), 3290–3296.

    Google Scholar 

  51. Chao, C. C., Kim, Y. B., & Prinz, F. B. (2009). Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition. Nano Letters, 9(10), 3626–3628.

    Google Scholar 

  52. Holme, T. P., Lee, C., & Prinz, F. B. (2008). Atomic layer deposition of lsm cathodes for solid oxide fuel cells. Solid State Ionics, 179(27), 1540–1544.

    Google Scholar 

  53. Jiang, X., Huang, H., Prinz, F. B., & Bent, S. F. (2008). Application of atomic layer deposition of platinum to solid oxide fuel cells. Chemistry of Materials, 20(12), 3897–3905.

    Google Scholar 

  54. Balĺee, E., Ringuedé, A., Cassir, M., Putkonen, M., & Niinisẗo, L. (2009). Synthesis of a thin-layered ionic conductor, CeO2-Y2O3, by atomic layer deposition in view of solid oxide fuel cell applications. Chemistry of Materials, 21(19), 4614–4619.

    Google Scholar 

  55. Christensen, S. T., Elam, J. W., Rabuffetti, F. A., Ma, Q., Weigand, S. J., Lee, B., et al. (2009). Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. Small (Weinheim an der Bergstrasse, Germany), 5(6), 750–757.

    Google Scholar 

  56. Christensen, S. T., Feng, H., Libera, J. L., Guo, N., Miller, J. T., Stair, P. C., et al. (2010). Supported Ru − Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Letters, 10(8), 3047–3051.

    Google Scholar 

  57. Shim, J. H., Jiang, X., Bent, S. F., & Prinz, F. B. (2010). Catalysts with pt surface coating by atomic layer deposition for solid oxide fuel cells. Journal of the Electrochemical Society, 157(6), B793–B797.

    Google Scholar 

  58. Park, J. S., Kim, Y. B., Shim, J. H., Kang, S., Gür, T. M., & Prinz, F. B. (2010). Evidence of proton transport in atomic layer deposited yttria-stabilized zirconia films. Chemistry of Materials, 22(18), 5366–5370.

    Google Scholar 

  59. Chao, C. C., Hsu, C. M., Cui, Y., & Prinz, F. B. (2011). Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano, 5(7), 5692–5696.

    Google Scholar 

  60. Kwon, C. W., Son, J. W., Lee, J. H., Kim, H. M., Lee, H. W., & Kim, K. B. (2011). High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Advanced Functional Materials, 21(6), 1154–1159.

    Google Scholar 

  61. Fan, Z., Chao, C. C., Hossein-Babaei, F., & Prinz, F. B. (2011). Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. Journal of Materials Chemistry, 21(29), 10903–10906.

    Google Scholar 

  62. Fan, Z., & Prinz, F. B. (2011). Enhancing oxide ion incorporation kinetics by nanoscale yttria-doped ceria interlayers. Nano Letters, 11(6), 2202–2205.

    Google Scholar 

  63. An, J., Kim, Y. B., Park, J., Gür, T. M., & Prinz, F. B. (2013). Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 w/cm2 at 450 C. Nano Letters, 13(9), 4551–4555.

    Google Scholar 

  64. Son, K. S., Bae, K., Kim, J. W., Ha, J. S., & Shim, J. H. (2013). Ion conduction in nanoscale yttria-stabilized zirconia fabricated by atomic layer deposition with various doping rates. Journal of Vacuum Science and Technology A, 31(1), 01A107.

    Google Scholar 

  65. Kim, H. K., Jang, D. Y., Kim, J. W., Bae, K., & Shim, J. H. (2015). Ionic properties of ultrathin yttria-stabilized zirconia thin films fabricated by atomic layer deposition with water, oxygen, and ozone. Thin Solid Films, 589, 441–445.

    Google Scholar 

  66. Jang, D. Y., Kim, H. K., Kim, J. W., Bae, K., Schlupp, M. V. F., Park, S. W., et al. (2015). Low-temperature performance of yttria-stabilized zirconia prepared by atomic layer deposition. Journal of Power Sources, 274, 611–618.

    Google Scholar 

  67. An, J., Kim, Y. B., Gür, T. M., & Prinz, F. B. (2012). Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer. ACS Applied Materials & Interfaces, 4(12), 6790–6795.

    Google Scholar 

  68. Gong, Y., Palacio, D., Song, X., Patel, R. L., Liang, X., Zhao, X., et al. (2013). Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Letters, 13(9), 4340–4345.

    Google Scholar 

  69. Gong, Y., Patel, R. L., Liang, X., Palacio, D., Song, X., Goodenough, J. B., et al. (2013). Atomic layer deposition functionalized composite sofc cathode La0.6Sr0.4Fe0.8Co0.2O3-δ-Gd0.2Ce0.8O1.9: enhanced long-term stability. Chemistry of Materials, 25(21), 4224–4231.

    Google Scholar 

  70. Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., & Gauckler, L. J. (2000). Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics, 131(1), 79–96.

    Google Scholar 

  71. An, J., Kim, Y. B., Jung, H. J., Park, J. S., Cha, S. W., Gür, T. M., et al. (2012). Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy. International Journal of Precision Engineering and Manufacturing, 13(7), 1273–1279.

    Google Scholar 

  72. Kim, Y., Noh, S., Cho, G. Y., Park, T., Lee, Y. H., Yu, W., et al. (2016). Characterization of thin film solid oxide fuel cells with variations in the thickness of nickel oxide-gadolinia doped ceria anode. International Journal of Precision Engineering and Manufacturing, 17(8), 1079–1083.

    Google Scholar 

  73. Suntola, T. (1989). Atomic layer epitaxy. Materials Science Reports, 4(5), 261–312.

    Google Scholar 

  74. Chen, Y., Gerdes, K., & Song, X. (2016). Nanoionics and nanocatalysts: conformal mesoporous surface scaffold for cathode of solid oxide fuel cells. Scientific Reports, 6, 32997.

    Google Scholar 

  75. Park, S. W., Han, G. D., Choi, H. J., Prinz, F. B., & Shim, J. H. (2018). Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat. Applied Surface Science, 441, 718–723.

    Google Scholar 

  76. Putkonen, M. (2002). Development of Low-temperature Deposition Processes by Atomic Layer Epitaxy for Binary and Ternary Oxide Thin Films. Espoo: Helsinki University of Technology.

    Google Scholar 

  77. Singh, J. A., Yang, N., & Bent, S. F. (2017). Nanoengineering heterogeneous catalysts by atomic layer deposition. Annual Review of Chemical and Biomolecular Engineering, 8, 41–62.

    Google Scholar 

  78. Wen, L., Zhou, M., Wang, C., Mi, Y., & Lei, Y. (2016). Nanoengineering energy conversion and storage devices via atomic layer deposition. Adv Energy Mater, 6(23), 1300468.

    Google Scholar 

  79. Kim, S. K., Lee, S. W., Han, J. H., Lee, B., Han, S., & Hwang, C. S. (2010). Capacitors with an equivalent oxide thickness of < 0.5 nm for nanoscale electronic semiconductor memory. Advanced Functional Materials, 20(18), 2989–3003.

    Google Scholar 

  80. Marichy, C., & Pinna, N. (2013). Carbon-nanostructures coated/decorated by atomic layer deposition: growth and applications. Coordination Chemistry Reviews, 257(23–24), 3232–3253.

    Google Scholar 

  81. Park, K.-H., Han, G. D., Neoh, K. C., Kim, T.-S., Shim, J. H., & Park, H.-D. (2017). Antibacterial activity of the thin ZnO film formed by atomic layer deposition under UV-A light. Chemical Engineering Journal, 328, 988–996.

    Google Scholar 

  82. Profijt, H. B., Potts, S. E., Van De Sanden, M. C. M., & Kessels, W. M. M. (2011). Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science and Technology A, 29(5), 050801.

    Google Scholar 

  83. Poodt, P., Cameron, D. C., Dickey, E., George, S. M., Kuznetsov, V., Parsons, G. N., et al. (2012). Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. Journal of Vacuum Science and Technology A, 30(1), 010802.

    Google Scholar 

  84. Langston, M. C., Dasgupta, N. P., Jung, H. J., Logar, M., Huang, Y., Sinclair, R., et al. (2012). In situ cycle-by-cycle flash annealing of atomic layer deposited materials. Journal of Physical Chemistry C, 116(45), 24177–24183.

    Google Scholar 

  85. Henke, T., Knaut, M., Hossbach, C., Geidel, M., Albert, M., & Bartha, J. W. (2017). Growth of aluminum oxide thin films with enhanced film density by the integration of in situ flash annealing into low-temperature atomic layer deposition. Surface & Coatings Technology, 309, 600–608.

    Google Scholar 

  86. Cho, G. Y., Noh, S., Lee, Y. H., Ji, S., Hong, S. W., Koo, B., et al. (2016). Properties of nanostructured undoped ZrO2 thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells. Journal of Vacuum Science and Technology A, 34(1), 01A151.

    Google Scholar 

  87. Kim, H., & Rossnagel, S. M. (2002). “Growth kinetics and initial stage growth during plasma-enhanced ti atomic layer deposition. Journal of Vacuum Science and Technology A, 20(3), 802–808.

    Google Scholar 

  88. Park, J. S., Park, H. S., & Kang, S. W. (2002). Plasma-enhanced atomic layer deposition of Ta-N thin films. Journal of the Electrochemical Society, 149(1), C28–C32.

    Google Scholar 

  89. Longrie, D., Deduytsche, D., & Detavernier, C. (2014). Reactor concepts for atomic layer deposition on agitated particles: A review. Journal of Vacuum Science and Technology A, 32(1), 010802.

    Google Scholar 

  90. Hoye, R. L. Z., Muñoz-Rojas, D., Nelson, S. F., Illiberi, A., Poodt, P., Roozeboom, F., et al. (2015). Research update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices. APL Materials, 3(4), 040701.

    Google Scholar 

  91. Kim, S. K., Kim, W.-D., Kim, K.-M., Hwang, C. S., & Jeong, J. (2004). High dielectric constant TiO2 thin films on a ru electrode grown at 250 C by atomic-layer deposition. Applied Physics Letters, 85(18), 4112–4114.

    Google Scholar 

  92. Myung, S.-T., Izumi, K., Komaba, S., Sun, Y.-K., Yashiro, H., & Kumagai, N. (2005). Role of alumina coating on Li − Ni − Co − Mn − O particles as positive electrode material for lithium-ion batteries. Chemistry of Materials, 17(14), 3695–3704.

    Google Scholar 

  93. Zhang, W. M., Wu, X. L., Hu, J. S., Guo, Y. G., & Wan, L. J. (2008). Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Advanced Functional Materials, 18(24), 3941–3946.

    Google Scholar 

  94. Yu, M., Wang, A., Wang, Y., Li, C., & Shi, G. (2014). An alumina stabilized ZnO–graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale, 6(19), 11419–11424.

    Google Scholar 

  95. Li, X., Meng, X., Liu, J., Geng, D., Zhang, Y., Banis, M. N., et al. (2012). Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Advanced Functional Materials, 22(8), 1647–1654.

    Google Scholar 

  96. Steele, B. C., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345–352.

    Google Scholar 

  97. Lashtabeg, A., & Skinner, S. J. (2006). Solid oxide fuel cells—a challenge for materials chemists? Journal of Materials Chemistry, 16(31), 3161–3170.

    Google Scholar 

  98. Fergus, J. W. (2005). Sealants for solid oxide fuel cells. Journal of Power Sources, 147(1), 46–57.

    Google Scholar 

  99. Fergus, J. W. (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A, 397(1), 271–283.

    Google Scholar 

  100. Wachsman, E. D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science, 334(6058), 935–939.

    Google Scholar 

  101. Wachsman, E. D., Marlowe, C. A., & Lee, K. T. (2012). Role of solid oxide fuel cells in a balanced energy strategy. Energy & Environmental Science, 5(2), 5498–5509.

    Google Scholar 

  102. De Souza, S., Visco, S. J., & De Jonghe, L. C. (1997). Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics, 98(1–2), 57–61.

    Google Scholar 

  103. O’hayre, R., Cha, S. W., Prinz, F. B., & Colella, W. (2016). Fuel Cell Fundamentals. New York: Wiley.

    Google Scholar 

  104. Adler, S. B. (2004). Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 104(10), 4791–4843.

    Google Scholar 

  105. Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125–1144.

    Google Scholar 

  106. Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43(21), 6799–6833.

    Google Scholar 

  107. Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. Journal of Solid State Electrochemistry, 12(9), 1039–1060.

    Google Scholar 

  108. Adler, S. B., Lane, J. A., & Steele, B. C. H. (1996). Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of the Electrochemical Society, 143(11), 3554–3564.

    Google Scholar 

  109. Fleig, J. (2003). Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance. Annual Review of Materials Science, 33(1), 361–382.

    Google Scholar 

  110. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., & Barnett, S. A. (2016). A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 9(5), 1602–1644.

    Google Scholar 

  111. Vohs, J. M., & Gorte, R. J. (2009). High-performance SOFC cathodes prepared by infiltration. Advanced Materials, 21(9), 943–956.

    Google Scholar 

  112. Sholklapper, T. Z., Kurokawa, H., Jacobson, C., Visco, S., & De Jonghe, L. (2007). Nanostructured solid oxide fuel cell electrodes. Nano Letters, 7(7), 2136–2141.

    Google Scholar 

  113. Jung, W., & Tuller, H. L. (2012). Investigation of surface sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy & Environmental Science, 5(1), 5370–5378.

    Google Scholar 

  114. Cai, Z., Kubicek, M., Fleig, J. R., & Yildiz, B. (2012). Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chemistry of Materials, 24(6), 1116–1127.

  115. Lee, W., Han, J. W., Chen, Y., Cai, Z., & Yildiz, B. (2013). Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. Journal of the American Chemical Society, 135(21), 7909–7925.

    Google Scholar 

  116. Crumlin, E. J., Mutoro, E., Liu, Z., Grass, M. E., Biegalski, M. D., Lee, Y.-L., et al. (2012). Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy & Environmental Science, 5(3), 6081–6088.

    Google Scholar 

  117. Li, Y. K., Choi, H. J., Kim, H. K., Chean, N. K., Kim, M., Koo, J., et al. (2015). Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells. Journal of Power Sources, 295, 175–181.

    Google Scholar 

  118. Neoh, K. C., Han, G. D., Kim, M., Kim, J. W., Choi, H. J., Park, S. W., et al. (2016). Nanoporous silver cathode surface treated by atomic layer deposition of CeOx for low-temperature solid oxide fuel cells. Nanotechnology, 27(18), 185403.

    Google Scholar 

  119. Chang, I., Ji, S., Park, J., Lee, M. H., & Cha, S. W. (2015). Ultrathin ysz coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity. Adv. Energy Mater., 5(10), 1402251.

    Google Scholar 

  120. Chang, I., Kim, D., Lee, Y., Hong, S.-H., & Cha, S. W. (2016). Effect of ultra-thin SnO2 coating on Pt catalyst for energy applications. International Journal of Precision Engineering and Manufacturing, 17(5), 691–694.

    Google Scholar 

  121. Karimaghaloo, A., Andrade, A. M., Grewal, S., Shim, J. H., & Lee, M. H. (2017). Mechanism of cathodic performance enhancement by a few-nanometer-thick oxide overcoat on porous Pt cathodes of solid oxide fuel cells. ACS Omega, 2(3), 806–813.

    Google Scholar 

  122. Küngas, R., Anthony, S. Y., Levine, J., Vohs, J. M., & Gorte, R. J. (2013). An investigation of oxygen reduction kinetics in lsf electrodes. Journal of the Electrochemical Society, 160(2), F205–F211.

    Google Scholar 

  123. Anthony, S. Y., Küngas, R., Vohs, J. M., & Gorte, R. J. (2013). Modification of SOFC cathodes by atomic layer deposition. Journal of the Electrochemical Society, 160(11), F1225–F1231.

    Google Scholar 

  124. Kim, E.-H., Jung, H.-J., An, K.-S., Park, J.-Y., Lee, J., Hwang, I.-D., et al. (2014). Degradation of La0.6Sr0.4CoO3-based cathode performance in solid oxide fuel cells due to the presence of aluminum oxide deposited through atomic layer deposition. Ceramics International, 40(6), 7817–7822.

    Google Scholar 

  125. Choi, H. J., Bae, K., Jang, D. Y., Kim, J. W., & Shim, J. H. (2015). Performance degradation of lanthanum strontium cobaltite after surface modification. Journal of the Electrochemical Society, 162(6), F622–F626.

    Google Scholar 

  126. Nilsen, O., Rauwel, E., Fjellvåg, H., & Kjekshus, A. (2007). Growth of La1−xCaxMnO3 thin films by atomic layer deposition. Journal of Materials Chemistry, 17(15), 1466–1475.

    Google Scholar 

  127. Lie, M., Nilsen, O., Fjellvåg, H., & Kjekshus, A. (2009). Growth of La 1−xSrxFeO3 thin films by atomic layer deposition. Dalton Transactions, 3, 481–489.

    Google Scholar 

  128. Ahvenniemi, E., Matvejeff, M., & Karppinen, M. (2015). Atomic layer deposition of quaternary oxide (La, Sr)CoO3−δ thin films. Dalton Transactions, 44(17), 8001–8006.

    Google Scholar 

  129. Brahim, C., Chauveau, F., Ringuedé, A., Cassir, M., Putkonen, M., & Niinistö, L. (2009). ZrO2–In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for sofc applications. Journal of Materials Chemistry, 19(6), 760–766.

    Google Scholar 

  130. Seim, H., Nieminen, M., Niinistö, L., Fjellvåg, H., & Johansson, L.-S. (1997). Growth of LaCoO3 thin films from β-diketonate precursors. Applied Surface Science, 112, 243–250.

    Google Scholar 

  131. Nilsen, O., Peussa, M., Fjellvåg, H., Niinistö, L., & Kjekshus, A. (1999). Thin film deposition of lanthanum manganite perovskite by the ALE process. Journal of Materials Chemistry, 9(8), 1781–1784.

    Google Scholar 

  132. Chao, C. C., Motoyama, M., & Prinz, F. B. (2012). Nanostructured platinum catalysts by atomic-layer deposition for solid-oxide fuel cells. Advanced Energy Materials, 2(6), 651–654.

    Google Scholar 

  133. An, J., Kim, Y.-B., & Prinz, F. B. (2013). Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. Physical Chemistry Chemical Physics: PCCP, 15(20), 7520–7525.

    Google Scholar 

  134. Ji, S., Chang, I., Cho, G. Y., Lee, Y. H., Shim, J. H., & Cha, S. W. (2014). Application of dense nano-thin platinum films for low-temperature solid oxide fuel cells by atomic layer deposition. International Journal of Hydrogen Energy, 39(23), 12402–12408.

    Google Scholar 

  135. Jeong, H. J., Kim, J. W., Bae, K., Jung, H., & Shim, J. H. (2015). Platinum–ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells. ACS Catalysis, 5(3), 1914–1921.

    Google Scholar 

  136. Jeong, H., Kim, J. W., Park, J., An, J., Lee, T., Prinz, F. B., et al. (2016). Bimetallic nickel/ruthenium catalysts synthesized by atomic layer deposition for low-temperature direct methanol solid oxide fuel cells. ACS Applied Materials & Interfaces, 8(44), 30090–30098.

    Google Scholar 

  137. Jeong, H. J., Kim, J. W., Jang, D. Y., & Shim, J. H. (2015). Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells. Journal of Power Sources, 291, 239–245.

    Google Scholar 

  138. Gür, T. M., Bent, S. F., & Prinz, F. B. (2014). Nanostructuring materials for solar-to-hydrogen conversion. Journal of Physical Chemistry C, 118(37), 21301–21315.

    Google Scholar 

  139. Tsvetkov, N., Lu, Q., Sun, L., Crumlin, E. J., & Yildiz, B. (2016). Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nature Materials, 15(9), 1010–1016.

    Google Scholar 

  140. Rupp, G. M., Opitz, A. K., Nenning, A., Limbeck, A., & Fleig, J. (2017). Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nature Materials, 16(6), 640–645.

    Google Scholar 

  141. Myung, J., Neagu, D., Miller, D. N., & Irvine, J. T. (2016). Switching on electrocatalytic activity in solid oxide cells. Nature, 537, 528–531.

    Google Scholar 

  142. Irvine, J. T., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C., & Mogensen, M. B. (2016). Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 1, 15014.

    Google Scholar 

  143. Neagu, D., Oh, T.-S., Miller, D. N., Ménard, H., Bukhari, S. M., Gamble, S. R., et al. (2015). Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 6, 8120.

    Google Scholar 

  144. Zhu, Y., Zhou, W., Ran, R., Chen, Y., Shao, Z., & Liu, M. (2015). Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Letters, 16(1), 512–518.

    Google Scholar 

  145. Yildiz, B. (2014). “Stretching” the energy landscape of oxides—effects on electrocatalysis and diffusion. MRS Bulletin, 39(2), 147–156.

    Google Scholar 

  146. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y., & Morgan, D. (2011). Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy & Environmental Science, 4(10), 3966–3970.

    Google Scholar 

  147. Kushima, A., Yip, S., & Yildiz, B. (2010). Competing strain effects in reactivity of LaCoO3 with oxygen. Physical Review B, 82(11), 115435.

    Google Scholar 

  148. Kubicek, M., Cai, Z., Ma, W., Yildiz, B., Hutter, H., & Fleig, J. R. (2013). Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–xSrxCoO3−δ thin films. ACS Nano, 7(4), 3276–3286.

    Google Scholar 

  149. Tsvetkov, N., Lu, Q., Chen, Y., & Yildiz, B. (2015). Accelerated oxygen exchange kinetics on Nd2NiO4+δ thin films with tensile strain along c-axis. ACS Nano, 9(2), 1613–1621.

    Google Scholar 

  150. Petrie, J. R., Mitra, C., Jeen, H., Choi, W. S., Meyer, T. L., Reboredo, F. A., et al. (2016). Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Advanced Functional Materials, 26(10), 1564–1570.

    Google Scholar 

  151. McDaniel, M. D., Ngo, T. Q., Hu, S., Posadas, A., Demkov, A. A., & Ekerdt, J. G. (2015). Atomic layer deposition of perovskite oxides and their epitaxial integration with si, ge, and other semiconductors. Applied Physical Review, 2(4), 041301.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010032170). T.M.G., Y.K., F.B.P, T.D.S., S.X. sincerely appreciate the Volkswagen group for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joon Hyung Shim, Jihwan An or Young Beom Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, J.H., Han, G.D., Choi, H.J. et al. Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 629–646 (2019). https://doi.org/10.1007/s40684-019-00092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00092-7

Keywords

Navigation