Skip to main content
Log in

High-Performance Ni/Pt Composite Catalytic Anode with Ultra-Low Pt Loading for Low-Temperature Solid Oxide Fuel Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this study, we developed a Ni/Pt bilayer catalytic anode that has high electrochemical activity and significantly reduced Pt loading amount, for low-temperature solid oxide fuel cells (LT-SOFCs). The Ni/Pt bilayer anodes with various thicknesses of the Pt catalytic active layer were fabricated on yttria-stabilized zirconia substrates via the direct current sputtering technique, and their performances were evaluated for the LT-SOFCs. The optimal thickness of the Pt catalytic layer for the Ni/Pt bilayer was found to be 10 nm based on the results for the fuel cell performance and electrochemical impedance spectroscopy (EIS) analysis. The optimal Pt10/Ni140 anode showed a cell performance and polarization resistance very similar to those of a reference single-phase Pt anode, while having only 7% of the Pt loading amount of the reference Pt anode. For the detailed morphological analysis of the bilayer structure anode, we employed the pull-off delamination process to analyze both the surface and interface morphologies of the bilayer anodes and the interface morphology of the Ni/Pt bilayer anodes after the operating test was analyzed. The results presented herein indicate the suitability of the methodology for the morphological analysis of thin-film bilayer structures and contribute to reduce the cost of membrane electrode assembly fabrication for LT-SOFCs, thus facilitating the commercialization of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature,414(6861), 345–352.

    Google Scholar 

  2. Liu, Q. L., Khor, K. A., & Chan, S. H. (2006). High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. Journal of Power Sources,161(1), 123–128.

    Google Scholar 

  3. Xia, C., Chen, F., & Liu, M. (2001). Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochemical and Solid-State Letters,4(5), A52–A54.

    Google Scholar 

  4. Xia, C., & Liu, M. (2002). Novel cathodes for low-temperature solid oxide fuel cells. Advanced Materials,14(7), 521–523.

    Google Scholar 

  5. Song, C. (2002). Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today,77(1–2), 17–49.

    Google Scholar 

  6. Paek, J. Y., Chang, I., Lee, M. H., Ji, S., & Cha, S. W. (2013). Influence of target to substrate distance on properties of Y-doped BaZrO3 thin films grown by pulsed laser deposition. International Journal of Precision Engineering and Manufacturing,14(7), 839–843.

    Google Scholar 

  7. Kosacki, I., Rouleau, C. M., Becher, P. F., Bentley, J., & Lowndes, D. H. (2005). Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics,176(13–14), 1319–1326.

    Google Scholar 

  8. Tuller, H. L. (2000). Ionic conduction in nanocrystalline materials. Solid State Ionics,131(1–2), 143–157.

    Google Scholar 

  9. Hui, S., et al. (2007). A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources,172(2), 493–502.

    Google Scholar 

  10. Van Herle, J., McEvoy, A. J., & Thampi, K. R. (1996). A study on the La1−xSrxMnO3 oxygen cathode. Electrochimica Acta,41(9), 1447–1454.

    Google Scholar 

  11. Steele, B. C. H. (1996). Proceedings of the 10th international conference on solid state ionics survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics,86, 1223–1234.

    Google Scholar 

  12. Son, J.-W., & Song, H.-S. (2014). Influence of current collector and cathode area discrepancy on performace evaluation of solid oxide fuel cell with thin-film-processed cathode. International Journal of Precision Engineering and Manufacturing-Green Technology,1(4), 313–316.

    Google Scholar 

  13. Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W. H., et al. (2018). Thin film solid oxide fuel cells operating below 600 °C: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,5(3), 441–453.

    Google Scholar 

  14. Tanveer, W. H., Ji, S., Yu, W., & Cha, S. W. (2015). Characterization of atomic layer deposited and sputtered yttria-stabilized-zirconia thin films for low-temperature solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing,16(10), 2229–2234.

    Google Scholar 

  15. Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., & Gauckler, L. J. (2000). Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics,131(1–2), 79–96.

    Google Scholar 

  16. Beckel, D., et al. (2007). Thin films for micro solid oxide fuel cells. Journal of Power Sources,173(1), 325–345.

    Google Scholar 

  17. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., & Prinz, F. B. (2007). High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society,154(1), B20–B24.

    Google Scholar 

  18. Su, P.-C., Chao, C.-C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters,8(8), 2289–2292.

    Google Scholar 

  19. Shim, J. H., Chao, C.-C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials,19(15), 3850–3854.

    Google Scholar 

  20. An, J., Kim, Y.-B., Park, J., Gür, T. M., & Prinz, F. B. (2013). Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 °C. Nano Letters,13(9), 4551–4555.

    Google Scholar 

  21. Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., Kim, Y. B., et al. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology,3(1), 35–39.

    Google Scholar 

  22. Dusastre, V., & Kilner, J. A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics,126(1), 163–174.

    Google Scholar 

  23. Wonjong, Y., et al. (2016). PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells. Nanotechnology,27(41), 415402.

    Google Scholar 

  24. Lee, Y. H., Cho, G. Y., Chang, I., Ji, S., Kim, Y. B., & Cha, S. W. (2016). Platinum-based nanocomposite electrodes for low-temperature solid oxide fuel cells with extended lifetime. Journal of Power Sources,307(Supplement C), 289–296.

    Google Scholar 

  25. An, J., Kim, Y.-B., & Prinz, F. B. (2013). Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. Physical Chemistry Chemical Physics,15(20), 7520–7525.

    Google Scholar 

  26. Zhang, J.-M., Ma, F., & Xu, K.-W. (2004). Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science,229(1), 34–42.

    Google Scholar 

  27. Jung, H., Bae, K., Jang, D. Y., Lee, Y. H., Cha, S.-W., & Shim, J. H. (2014). Evaluation of porous platinum, nickel, and lanthanum strontium cobaltite as electrode materials for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy,39(31), 17828–17835.

    Google Scholar 

  28. Evans, A., Bieberle-Hütter, A., Rupp, J. L., & Gauckler, L. J. (2009). Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources,194(1), 119–129.

    Google Scholar 

  29. Kitchin, J. R., Khan, N. A., Barteau, M. A., Chen, J. G., Yakshinskiy, B., & Madey, T. E. (2003). Elucidation of the active surface and origin of the weak metal–hydrogen bond on Ni/Pt(111) bimetallic surfaces: A surface science and density functional theory study. Surface Science,544(2), 295–308.

    Google Scholar 

  30. Ramaswamy, V., Phillips, M. A., Nix, W. D., & Clemens, B. M. (2001). Observation of the strengthening of Pt layers in Ni/Pt and Pd/Pt multilayers by in situ substrate curvature measurement. Materials Science and Engineering A,319–321(Supplement C), 887–892.

    Google Scholar 

  31. Xiong, L., & Manthiram, A. (2005). Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. Journal of the Electrochemical Society,152(4), A697–A703.

    Google Scholar 

  32. Shi, G., Yano, H., Tryk, D. A., Iiyama, A., & Uchida, H. (2017). Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt–M (M = Fe Co, Ni) alloys with stabilized pt-skin layers. ACS Catalysis,7(1), 267–274.

    Google Scholar 

  33. Bae, J., Yang, H., Son, J., Koo, B., & Kim, Y.-B. (2016). Enhanced oxygen reduction reaction in nanocrystalline surface of samaria-doped ceria via randomly distributed dopants. Journal of the American Ceramic Society,99(12), 4050–4056.

    Google Scholar 

  34. Steinbach, A. (2017). High performance, durable, low cost membrane electrode assemblies for transportation applications. Maplewood: 3M Company.

    Google Scholar 

  35. Seo, H. G., Choi, Y., Koo, B., Jang, A., & Jung, W. (2016). Robust nano-architectured composite thin films for a low-temperature solid oxide fuel cell cathode. Journal of Materials Chemistry A,4(24), 9394–9402.

    Google Scholar 

  36. Holton, O. T., & Stevenson, J. W. (2013). The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review,57(4), 259–271.

    Google Scholar 

  37. O’Hayre, R., Lee, S.-J., Cha, S.-W., & Prinz, F. B. (2002). A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. Journal of Power Sources,109(2), 483–493.

    Google Scholar 

  38. O’hayre, R., Cha, S.-W., Prinz, F. B., & Colella, W. (2016). Fuel cell fundamentals. New York: Wiley.

    Google Scholar 

  39. Barsoukov, E., & Macdonald, J. R. (2005). Impedance spectroscopy: Theory, experiment, and applications. New York: Wiley.

    Google Scholar 

  40. Jiang, S. P., & Badwal, S. P. S. (1999). An electrode kinetics study of H2 oxidation on Ni/Y2O3–ZrO2 cermet electrode of the solid oxide fuel cell. Solid State Ionics,123(1), 209–224.

    Google Scholar 

  41. Jiang, S. P., & Badwal, S. P. S. (1997). Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal zirconia electrolyte. Journal of the Electrochemical Society,144(11), 3777–3784.

    Google Scholar 

  42. Fu, Q. X., Tietz, F., & Stöver, D. (2006). La0.4Sr0.6Ti1−xMnxO3−δ perovskites as anode materials for solid oxide fuel cells. Journal of the Electrochemical Society,153(4), D74–D83.

    Google Scholar 

  43. Primdahl, S., & Mogensen, M. (1997). Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes. Journal of the Electrochemical Society,144(10), 3409–3419.

    Google Scholar 

  44. Yu, C.-C., Kim, S., Baek, J. D., Li, Y., Su, P.-C., & Kim, T.-S. (2015). Direct observation of nanoscale Pt electrode agglomeration at the triple phase boundary. ACS Applied Materials and Interfaces,7(11), 6036–6040.

    Google Scholar 

Download references

Acknowledgements

Y. B. K gratefully acknowledges financial support from the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (no. 201700000003242) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A6A1029029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Beom Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Hong, S., Jang, KL. et al. High-Performance Ni/Pt Composite Catalytic Anode with Ultra-Low Pt Loading for Low-Temperature Solid Oxide Fuel Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 141–150 (2020). https://doi.org/10.1007/s40684-019-00121-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00121-5

Keywords

Navigation