Skip to main content
Log in

Laminated Structure of Al2O3 and TiO2 for Enhancing Performance of Reverse Electrowetting-On-Dielectric Energy Harvesting

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Reverse electrowetting-on-dielectric (REWOD) is a novel energy harvesting technique that has been gaining considerable amount of attention owing to its high power output even with the small amount of disturbance. To enhance the output power of REWOD, the dielectric layers in the system require a high capacitance. Nevertheless, current leakage is inevitable in such high-k dielectric materials. In this work, the application of a high-k dielectric material TiO2 has been investigated along with a new leakage barrier layer Al2O3 that acts as a lamination, in order to minimize the current leakage and maximize the power output. As expected, the laminated structure with TiO2 and Al2O3 exhibited reduced current leakage and relatively high capacitance compared to the single layer of TiO2 or Al2O3, respectively. As the electrical energy is generated through the interaction of liquid droplets and the multilayered dielectric film, the energy-harvesting performance displayed different behavior about current generation with respect to the top surface material that is in contact with the conductive droplet. Overall, the laminated REWOD energy harvesting system produced an enhanced power density of 15.36 mW cm−2 at a low bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Priya, S., & Inman, D. J. (2009). Energy harvesting technologies. New york: Springer.

    Book  Google Scholar 

  2. Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12, 1129–1141.

    Article  Google Scholar 

  3. Park, J.-H., Lim, T.-W., Kim, S.-D., & Park, S.-H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 253–259.

    Article  Google Scholar 

  4. Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., & Youn, B. D. (2015). An energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 51–57.

    Article  Google Scholar 

  5. Usharani, R., Uma, G., & Umapathy, M. (2016). Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 343–351.

    Article  Google Scholar 

  6. Wang, Z. L., & Wu, W. (2012). Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition, 51, 11700–11721.

    Article  Google Scholar 

  7. Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s intranet of things to a future internet of things: a wireless- and mobility-related view. IEEE Wireless Communicatins, 17(6), 44–51.

    Article  Google Scholar 

  8. Hu, R., Cola, B. A., Haram, N., Barisci, J. N., Lee, S., Stoughton, S., et al. (2010). Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Letters, 10, 838–846.

    Article  Google Scholar 

  9. Zhu, G., Su, Y., Bai, P., Chen, J., Jing, Q., Yang, W., et al. (2014). Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano, 8, 6031–6037.

    Article  Google Scholar 

  10. Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., & Suzuki, S. (2009). Electrostatic micro power generation from low-frequency vibration such as human motion. Journal of Micromechanics and Microengineering, 19, 094002.

    Article  Google Scholar 

  11. Zorlu, Ö., Tropal, E. T., & Kulah, H. (2011). A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors Journal, 11, 481–488.

    Article  Google Scholar 

  12. Wang, S., Lin, L., & Wang, Z. L. (2012). Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters, 12, 6339–6346.

    Article  Google Scholar 

  13. Moon, J. K., Jeong, J., Lee, D., & Pak, H. K. (2013). Electrical power generation by mechanically modulating electrical double layers. Nature Communications, 4, 1487.

    Article  Google Scholar 

  14. Kwon, S.-H., Park, J., Kim, W. K., Yang, Y., Lee, E., Han, C. J., et al. (2014). An effective energy harvesting method from a natural water motion active transducer. Energy & Environmental Science, 7, 3279–3283.

    Article  Google Scholar 

  15. Kim, S., Choi, S. J., Zhao, K., Yang, H., Gobbi, G., Zhang, S., et al. (2016). Electrochemically driven mechanical energy harvesting. Nature Communications, 7, 10146.

    Article  Google Scholar 

  16. Kim, S. H., Haines, C. S., Li, N., Kim, K. J., Mun, T. J., Choi, C., et al. (2017). Harvesting electrical energy from carbon nanotube yarn twist. Science, 357, 773–778.

    Article  Google Scholar 

  17. Krupenkin, T., & Taylor, J. A. (2011). Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications, 2, 448.

    Article  Google Scholar 

  18. Hsu, T. H., Manakasettham, S., Taylor, J. A., & Krupendin, T. (2015). Bubbler: a novel ultra-high power density energy harvesting method based on reverse electrowetting. Scientific Reports, 5, 16537.

    Article  Google Scholar 

  19. Yang, H., Hong, S., Koo, B., Lee, D., & Kim, Y.-B. (2017). High-performance reverse electrowetting energy harvesting using atomic-layer-deposited dielectric film. Nano Energy, 31, 450–455.

    Article  Google Scholar 

  20. An, J., Usui, T., Logar, M., Park, J., Thian, D., Kim, S., et al. (2014). Plasma processing for crystallization and densification of atomic layer deposition BaTiO3 thin films. ACS Applied Materials & Interfaces, 6, 10656–10660.

    Article  Google Scholar 

  21. Aarik, J., Aidla, A., Kiisler, A.-A., Uustare, T., & Sammelselg, V. (1997). Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition. Thin Solid Films, 305, 270–273.

    Article  Google Scholar 

  22. Kadosima, M., Hiratani, M., Shimamoto, Y., Torii, K., Miki, H., Kiruma, S., et al. (2003). Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films, 424, 224–228.

    Article  Google Scholar 

  23. Usui, T., Mollinger, S. A., Iancu, A. T., Reis, T. N., & Prinz, F. B. (2012). High aspect ratio and high breakdown strength metal-oxide capacitors. Applied Physics Letters, 101, 033905.

    Article  Google Scholar 

  24. Di Paola, A., Bellardita, M., & Palmisano, L. (2013). Brookite, the least known TiO2 photocatalyst. Catalysts, 3, 36–73.

    Article  Google Scholar 

  25. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R. (2003). Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 125, 475–482.

    Article  Google Scholar 

  26. Tzeng, S.-D., & Gwo, S. (2016). Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy. Journal of Applied Physics, 100, 023711.

    Article  Google Scholar 

  27. Basset, P., Galayko, D., Mahmood Paracha, A., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated an electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19, 115025.

    Article  Google Scholar 

  28. Huynh, D. H., Nguyen, T. C., Nguyen, P. D., Abeyrathne, C. D., Hossain, Md S, Evans, R., et al. (2016). Environmentally friendly power generator based on moving liquid dielectric and double layer effect. Scientific Reports, 6, 26708.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2012R1A6A1029029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Beom Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Lee, H., Lim, Y. et al. Laminated Structure of Al2O3 and TiO2 for Enhancing Performance of Reverse Electrowetting-On-Dielectric Energy Harvesting. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 103–111 (2021). https://doi.org/10.1007/s40684-019-00145-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00145-x

Keywords

Navigation